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Abstract:

Objective:

Biodiesel  is  a  renewable  fuel  considered as  the  main substitute  for  fossil  fuels.  Its  industrial  production is  mainly  made by the
transesterification  reaction.  In  most  processes,  information  on  the  production  of  biodiesel  is  essentially  done  by  off-line
measurements.

Methods:

However, for the purpose of control, where online monitoring of biodiesel conversion is required, this is not a satisfactory approach.
An  alternative  technique  to  the  online  quantification  of  conversion  is  the  near  infrared  (NIR)  spectroscopy,  which  is  fast  and
accurate. In this work, models for biodiesel reactions monitoring using NIR spectroscopy were developed based on the ester content
during alkali-catalyzed transesterification reaction between soybean oil  and ethanol.  Gas chromatography with flame ionization
detection was employed as the reference method for quantification. FT-NIR spectra were acquired with a transflectance probe. The
models were developed using Partial Least Squares (PLS) regression with synthetic samples at room temperature simulating reaction
composition for different ethanol to oil molar ratios and conversions. Model predictions were then validated online for reactions
performed with ethanol to oil molar ratios of 6 and 9 at 55ºC. Standard errors of prediction of external data were equal to 3.12%,
hence close to the experimental error of the reference technique (2.78%), showing that even without using data from a monitored
reaction to perform calibration, proper on-line predictions were provided during transesterification runs.

Results:

Additionally,  it  is  shown that  PLS models  and  NIR spectra  of  few samples  can  be  combined to  accurately  predict  the  glycerol
contents of the medium, making the NIR spectroscopy a powerful tool for biodiesel production monitoring.

Keywords:  Biodiesel,  Transesterification  reaction,  NIR  spectroscopy,  On-line  monitoring,  Petroluim  diesel,  Electromagnetic
radiation spectrum, HPLC.

1. INTRODUCTION

Biodiesel  is  a  renewable fuel  [1 -  5]  considered the main substitute of  fossil  fuels  [1,  6,  7].  It  presents reduced
exhaust emissions in comparison to petroleum diesel [8 - 10], it is biodegradable [2, 4, 9, 11, 12], and it is miscible in
all proportions to petroleum diesel [9]. Similar properties of diesel make possible the use of blends between biodiesel
and diesel in combustion engines without any modification [1, 7].

Industrial  biodiesel  production  is  mainly  performed by  the  transesterification  reaction  of  triacylglycerol  (TAG)
found  in  vegetable  oils  and  animal  fats,  with  a  short  chain  alcohol  like  methanol  and  ethanol  in  the  presence  of  a
catalyst, producing glycerol as a by-product [1, 5, 6, 12 - 17]. Transesterification reaction occurs in steps producing
intermediates like monoacylglycerol  (MAG) and diacyglycerol  (DAG), which  can remain at  the end of reaction along
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with non-reacted TAG and alcohol [3, 14, 16, 18], being contaminants to the produced biodiesel.

In most processes, information on biodiesel production is found essentially through off-line measurements of ester
contents  of  samples  taken  from  the  reactor.  However,  for  control  purposes,  where  online  process  monitoring  of
biodiesel conversion is required, this is not a satisfactory approach. The most used methods for biodiesel analysis and
monitoring are Gas Chromatography (GC) and High Performance Liquid Chromatography (HPLC) [4, 8, 10, 17, 19].
These methods are quite accurate and provide excellent quantitative results, but they are time consuming techniques and
involve high costs [1, 3, 10, 16, 18 - 21]. Infrared spectroscopy has been used as an alternative technique to overcome
the disadvantages of off-line methods used in quantification. This technique can still provide accurate results [10, 20], is
non-destructive [10, 14, 22, 23], sample pretreatment is not required [10, 23, 24] and it  has the advantage of being
capable  of  collecting  spectral  data  online  and  in-situ  [14,  24]  demonstrating  its  ability  as  a  real  time  monitoring
technique.

Infrared spectroscopy refers to the energy in the region of electromagnetic radiation spectrum, and it can be divided
into three areas: Near-infrared (NIR), Mid-infrared (MIR) and Far-infrared (FIR) [10]. NIR spectroscopy is a well-
established analytical technique based on the absorption of electromagnetic energy in the region from 780 to 2500 nm
(12820–4000 cm−1)  [3,  13,  18] that  generates spectra with overlapping peaks and valleys according to the complex
structure of compounds found in the samples.

Chemometric methods are able to process enormous amounts of sophisticated experimental data that are provided
by NIR technique [25],  and these methods use statistical or mathematical treatments to extract information about a
chemical system from the large data generated by NIR spectroscopy measurements [24]. Partial Least Squares (PLS)
has been the main multivariate method used in chemometrics [22, 24 - 26] to develop a calibration model between
reference experimental values and spectral data.

When applied specifically to biodiesel analysis, methods based on MIR or NIR spectroscopy and PLS have been
developed  for  biodiesel/diesel  blends  adulteration  monitoring  [6,  7,  32,  11,  15,  23,  27  -  31],  biodiesel  quality  or
contaminants  determination  [13,  16,  33  -  35],  physical  properties  estimation,  as  density  and  viscosity  [1,  36,  37],
transesterification reaction monitoring [4, 5, 43, 44, 14, 18, 21, 38 - 42] and quality determination of biodiesel/blends
by portable infrared equipment measurements [20, 45, 46], demonstrating even its use for industrial application. Works
based on transesterification monitoring are mainly focused on methyl esters [3, 4, 15, 18, 38, 42, 43], however, even
methanol actually being short chain alcohol is used due to its low cost and high reactivity [44 - 48]. There has been a
growing interest  in the biodiesel  produced from ethanol.  It  is  obtained from a renewable source and presents some
advantages over the methylic biodiesel, such as higher miscibility with the oil, improved cold flow properties, lower
greenhouse gases emission and present higher lubricity when compared to methylic biodiesel [49]. In general, works
using NIR spectroscopy are based on calibration models built and applied to samples under well-controlled conditions.
The standard experimental procedure generally involves sample collection during reaction, sample neutralization and
off-line  characterization,  for  a  number  of  transesterification  runs  carried  out  at  different  molar  ratios  and  catalyst
concentrations [4, 5, 12, 14, 18, 21]. These studies involve cumbersome and time-consuming experimental procedures.
Efforts to develop robust models based on a small set of samples should still be made to facilitate the transition from
laboratory (off-line) data to in-situ applications, as addressed in this paper.

The main objective of this work was the development of a calibration model based on gas chromatography reference
measurements combined with NIR and chemometrics for monitoring the biodiesel production from the alkali-catalyzed
transesterification of soybean oil with ethanol. Additionally, the quantification of glycerol content using NIR was also
addressed. Ester content evaluation and consequently the conversion and quality of the product were the main control
variable considered in this study.

2. EXPERIMENTAL

2.1. Biodiesel Production by Transesterification

Ethyl ester was prepared to perform an alkali-catalyzed transesterification of soybean oil and ethanol in accordance
with the procedures described elsewhere [50]. The chemicals used were a commercial soybean oil (Leve, acidity 0.20
mg KOH/g, density at 20 °C 0.919 g/cm3), ethanol (Neon, 99.8%) and sodium hydroxide (Exodo, >97%). All chemicals
were  used as  received.  Reactions  were  carried in  a  250 mL three-neck glass  equipped with  a  thermocouple,  reflux
column and stirred with a magnetic bar. The system was kept in a glycerol bath over a heater with a magnetic stirrer.
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An ethanol to oil molar ratio of 6:1 was used with 0.6 wt% of catalyst related to the oil mass [3, 14, 38, 51]. Six
transesterification runs were conducted in a batch where the mixtures of ethanol and sodium hydroxide were added to
the reactor and kept under stirring until complete solubilization of the sodium hydroxide, and then the oil was added,
keeping the temperature at 55 °C during 45 min. The total volume of the reactor was transferred to a separation funnel
where the lower phase was removed. The upper phase was washed with a 5 wt% solution of HCl P.A. (Vetec) at 60 °C,
discarding the lower phase and washing again two times with distilled water at 60 °C.

The ester  rich-phase obtained after  washing steps was rotary evaporated at  60 °C during 40 min to  remove the
remaining ethanol. Ten percent of the mass was considered as non-reacted oil, adding ethanol and NaOH keeping the
original molar ratio and the catalyst amount, proceeding the second step of the transesterification at the same conditions
of the first step. The rotary evaporated product was kept on a stove at 60 °C during 16 h and then it was filtered through
sodium  sulfate  P.A.  min.  99%  (Vetec)  and  qualitative  filter  paper.  Produced  biodiesel  was  analyzed  by  gas
chromatography  and  stored  on  an  amber  flask  under  refrigeration  [21].

2.2. Synthetic Samples Preparation

A total of 29 synthetic samples containing soybean oil, ethanol, ethyl ester (produced and analyzed as described
above)  and  glycerol  in  different  proportions  were  prepared  based  on  different  ethanol  to  oil  molar  ratios  and
conversions,  simulating  the  composition  in  the  reaction  medium  for  a  soybean  oil  and  ethanol  transesterification
(without  taking  into  account  the  catalyst  presence  in  the  reaction  medium).  The  molar  ratio  of  6:1  was  chosen  to
simulate conversion increments of 10%, generating 11 samples varying from 0 to 100% conversion. Molar ratios of 3:1,
9:1  and  12:1  had  conversion  increments  of  20%,  generating  each  one  6  samples  from 0  to  100% conversion.  The
samples were analyzed by gas chromatography and stored in closed flasks and kept under refrigeration.

2.3. Quantitative Analysis

The  glycerol  content  was  determined  following  the  method  described  by  Bondiolli  and  Bella  (2005)  [52]  and
contents of ethyl esters, free fatty acids and TAG were determined by gas chromatography (GC) with flame ionization
detector based on the European standard EN 14105.

Compound identification for GC method was done based on the retention time of standards belonging to several
classes  of  compounds  of  interest.  Quantification  was  performed  after  the  instrument  calibration  with  reference
substances and internal standards. All the reference standards used to build the calibration curves (glycerol, oleic acid,
ethyl linoleate, monoolein, diolein and triolein) were > 99% purity (Sigma-Aldrich).

Prior  to  chromatographic  analysis  all  samples  were  silylated  with  N-metil-N-trimetilsiltrifluoracetamida
(MSTFA)(Sigma-Aldrich, 98.5%)and diluted with heptane (Sigma-Aldrich, 99%). The concentration of the injection
solution was approximately 1 mg/mL.

All samples were analyzed using a Shimadzu chromatograph (GC 2010 Plus), a capillary column Select biodiesel
(15 m x 0.32 mm x 0.10 µm, Agilent), flame ionization detector (FID) and split injection mode (1:10) for 1 µL of the
solution. The injection temperature of 380 °C was used for quantification. The injector and detector temperatures were
380 °C and 400 °C, respectively. The oven temperature was programmed to increase from 50 °C to 180 °C with a 15
°C/min rate. The heating rate was reduced to 7 °C/min and the temperature was raised to 230 °C, the final temperature
of 380 °C was achieved with a 10 °C/min rate, keeping this temperature during 6 min. The total time of analysis was
36.81 min and helium analytical grade (White Martins) was used as mobile phase. The maximum experimental error of
this technique with respect to the ester content determination was 2.78%.

2.4. NIR Spectra Acquisition

The acquisition of the near-infrared spectra was performed in a Vertex 70 (Bruker) spectrophotometer. The spectra
were acquired using a Fourier transform transflectance immersion probe, in the wavenumber range from 4000 to 10000
cm-1, with a resolution of 4 cm-1 and 32 scans. The optical path of the accessory was equal to 2.5 mm, measurements
were made at 20 °C for synthetic samples and at reaction temperature when the transesterification was monitored, both
of them with stirring because the formation of a two-phase system is very fast. The background spectrum was acquired
with the empty probe and the NIR data were obtained using OPUS 4.0 software provided with the FT-NIR instrument.



98   The Open Chemical Engineering Journal, 2018, Volume 12 Gelinski et al.

2.5. On-line Reaction Monitoring

For on-line reaction monitoring, a mixture of ethyl esters was produced according to the procedure described in
section 2.1, following only the first step of the reaction. The first reaction (R6) was performed with ethanol to oil molar
ratio of 6:1 and at each 2 min, starting from 6 min of reaction time, NIR spectrum was acquired at the same time an
aliquot of the reaction medium was collected, generating a total of 9 aliquots. The second reaction (R9) was performed
with ethanol to oil molar ratio of 9:1, collecting NIR spectrum and an aliquot of reaction medium at each 2 min starting
from 2 min of reaction time, generating a total of 14 aliquots. All the aliquots were instantly neutralized with glacial
acetic acid and analyzed by GC.

2.6. Data Analysis and Calibration Model

MATLAB R2016a software was used to perform the data analysis (spectra pre-processing) to calibrate and validate
the regression model. Outlier detection was performed based on leverage and studentized y-residuals values. Basically,
an outlier was identified if its leverage value was 2.5 times above the average leverage value or if its studentized y-
residual value was higher than 2.5.

All spectra were mean centered before the modeling procedures. The region with the greatest spectral differentiation
was identified and used to develop a multivariate calibration model based on partial least squares regression. First and
second order Savitzky-Golay derivatives with different segment sizes were tested as spectra pre-processing techniques.
Intending to monitor the transesterification reaction, six different models (M) based on the ethyl ester content prediction
were developed using synthetic samples data according to ethanol to oil molar ratios. M1: calibrated with synthetic
samples of molar ratios 3, 6, 9 and 12; M2: calibrated with synthetic samples of molar ratios 3, 6 and 9; M3: calibrated
with synthetic samples of molar ratios 6, 9 and 12; M4: calibrated with synthetic samples of molar ratios 6 and 9; M5:
calibrated with synthetic samples of molar ratio 6; M6: calibrated with synthetic samples of molar ratio 9. These models
were selected because they involved the molar ratios used for on-line monitored reactions.

The  best  number  of  Latent  Variables  (LV)  was  detected  by  the  root  mean  square  error  of  cross-validation
(RMSECV), using full cross-validation method, enabling that all the samples were tested at least once as external data.
Model validation was made by the Root Mean Square Error of Prediction (RMSEP) using data from two base catalyzed
transesterification reactions monitored on-line that were not used during the calibration step.

3. RESULTS AND DISCUSSION

3.1. Quantification

During sample preparation previously to the GC analysis, ethanol was removed in an air circulating oven at 60 oC
and then gravimetrically quantified. Glycerol was not detected during GC analysis probably due to decantation during
sample preparation, for this reason, glycerol quantification was performed by UV-Vis spectroscopy.

Since we used synthetic mixtures involving biodiesel, ethanol, soybean oil and glycerol, it was possible to compare
the GC results with those expected for ester contents according to the mass fraction of synthetic samples, which is the
compound  of  main  interest  for  the  construction  of  the  calibration  models  for  transesterification  monitoring.
Additionally, the results for triacylglycerol (representing the soybean oil), ethanol and glycerol content are also shown
below. Figs. (1 and 2) show the comparison for ester TAG content results, respectively, with the ones expected by the
mass fraction of each compound used in the preparation of the synthetic samples, both analyses were performed by CG-
FID

From the results presented in Figs. (1 and 2), it is observed that some data show deviations from the expected value.
Therefore, during the calibration step of the PLS regression model tests were performed to identify the outliers. Fig. (3)
presents the results for the quantification of ethanol by mass evaporation in a heated oven, showing that the results are
within the expected range.

Fig. (4) shows the results of glycerol quantification by UV-Vis and it is noted that the majority of the results were
below the expected level. The discrepancy regarding the results for the glycerol quantification can be explained by the
high density and viscosity of this compound and also due to the glycerol separation from the ester phase, which rapidly
decants  and  remains  trapped  in  the  walls  of  vials  and  pipette  tips.  However,  this  is  not  unusual  and  should  not  be
overemphasized.  On  the  other  hand,  this  issue  encourages  the  development  of  alternative  analytical  tools  able  to
accurately detect the glycerol contents in the mixture.



Biodiesel Synthesis Monitoring The Open Chemical Engineering Journal, 2018, Volume 12   99

Fig. (1). Ethyl ester content by GC versus ethyl ester content in the synthetic samples.

Fig. (2). Triacylglycerol content by GC versus triacylglycerol content in the synthetic samples.
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Fig. (3). Ethanol content by mass loss versus ethanol content in the synthetic samples.

Fig. (4). Glycerol content by UV-Vis method versus glycerol content in the synthetic samples.
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3.2. NIR Spectra and Multivariate Calibration

Fig. (5) shows the NIR spectra of the synthetic samples that were used to build the ethyl ester content calibration
model. The two extreme wavenumber regions ranging from 10000 - 9000 cm-1 and 4450 - 4000 cm-1presented noisy
signal and were not used for the PLS regression model.

Fig. (5). Synthetic samples NIR spectra without pre-treatment.

3.2.1. Ester Content Prediction Models

The first model M1 was developed using the wavenumber region from 9000 - 4450 cm-1 and according to variable
contributions  the  initial  region  was  reduced,  removing  wavenumbers  with  low  contributions  until  lack  of  model
improvement.  From all  the  synthetic  samples  four  data  points  were  detected as  outliers  following the  procedure  in
section 2.6 and removed from calibration models.

The wavenumber region from 6150 - 5941 cm-1 showed the highest spectral differentiation to build the calibration
models. In fact, this region corresponds to the first overtone of C-H stretching for CH2 and CH3 bonds, and to the best of
our knowledge the wavenumber region used in this work was not tested yet for transesterification reaction monitoring
and is narrower than the regions tested by Lima et al. [14] and Richard et al. [5, 21], which is advantageous because
narrow bands can be detected by smaller and portable infrared instruments.

First and second order Savitzky-Golay derivatives with different segment sizes and polynomial order of 2 and 3
were tested to check the model improvement for R6 prediction, however, the results were worse than the ones using raw
spectra and in some cases, this pre-treatment generated models with RMSEP values above 10%, as presented in Table 1.
The use of only mean-centered spectra is not usual because most of the works using NIR aiming models development
for transesterification monitoring have used at least a derivative pre-processing technique [4, 5, 14, 18, 21].

Table 1. Results for M1 model without and with SG derivative spectral pre-treatment for 25 calibration points and 9 external
validation points.

   Derivative order    -    1    2
   Polynomial order    -    2    3    2 or 3

   Segment size    -    11    21    11    21    11    21
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   Derivative order    -    1    2
   Polynomial order    -    2    3    2 or 3

   LV    4    6    3    6    3    6    4
   RMSEC (%)    2.83    1.97    3.58    2.42    3.46    3.02    3.45
   RMSECV (%)    5.39    4.88    4.57    5.14    5.75    7.91    6.41
   RMSEP (%)    4.59    5.80    6.76    9.99    7.95    12.89    11.03

The same procedure used to create the M1 model was performed for the other models always using the wavelength
region  of  6150  -  5941  cm-1  for  the  calibration  and  using  the  data  from  the  on-line  monitored  reactions  for  model
validation. Predicted values for ester content versus reference values (CG-FID analysis) are shown in Fig. (6).

(Table 1) contd.....

A  B

C  D
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Fig. (6). Predicted versus measured plot of PLS models for ethyl ester content, validated with (R6 + R9) data set using different
proposed models: a) M1 b) M2 c) M3 d) M4 e) M5 f) M6.

Table 2 summarizes the results of PLS regression models developed with 6150 - 5941 cm-1 wavenumber region and
different number of calibration points (N) for ethyl ester content. All of these models were validated using data from
two sets of alkali-catalyzed transesterification reaction (R6 and R9).

Table 2. PLS results for ethyl ester content calibration and prediction.

Model M1 M2 M3 M4 M5 M6
N 25 21 20 16 11 5
LV 4 4 4 5 2 3
RMSEC (%) 2.83 2.01 2.94 1.30 1.60 2.05
RMSECV (%) 5.39 4.04 6.10 4.47 2.21 -
R2 0.9916 0.9959 0.9952 0.9966 0.9931 0.9971
RMSEP (%) R6 4.59 4.63 4.82 4.44 2.41 8.13
RMSEP (%) R9 1.55 1.53 1.90 2.04 11.59 2.86
RMSEP (%) R6+R9 3.12 3.13 3.36 3.21 9.16 5.55

Based  on  the  RMSEP values  generated  by  the  models,  M1,  M2,  M3  and  M4  models  are  quite  accurate  as  the
reference method used, and an F-test at 95% of confidence level stated that the four results are statistically the same,
therefore any of them can be used for on-line monitoring of transesterification reaction with satisfactory precision.
Taking  into  account  the  RMSEP  for  R6  plus  R9,  the  best  prediction  for  on-line  monitoring  the  transesterification
reactions will be guaranteed using model M1. However, model M4 can be used if one requires a better prediction for R6
reaction with relatively good results for reaction R9, since this model spent less chemicals and time of analysis due to
the lower number of samples used to develop the model.

As expected the models M5 and M6 are only accurate for the molar ratio of reactants in which each model was
calibrated. Despite the sensitivity of the spectral data to the ester contents, it is hard to a model being able to predict the
ester content in the mixture at conditions far from the ones adopted during the calibration step, and normally the models
will be valid for the data range of the dependent variable. Unfortunately, the data set of synthetic samples simulating a
reaction with molar ratio of 9 has only 5 data, leading to a model that is not the best one for this molar ratio, as opposed

E  F
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to the model developed with synthetic samples simulating a reaction with molar ratio of 6 that generated the best model
to predict the reaction performed with this molar ratio.

Richard et al. [21] developed a model for ethyl ester content prediction using NIR reflectance measurement and the
results were RMSEC = 4.08% and RMSEP = 4.10%, with 5 latent variables and 44 calibration samples for a set of
molar  ratios  of  6,  9,  16.2,  22.7  and  45.4,  at  a  reaction  temperature  of  65  ºC.  In  the  current  work,  the  M1  model
presented lower RMSEP values for ethyl ester content prediction for reactions performed with molar ratios of 6 and 9,
with only 4 latent variables and less calibration samples. The predicted content of ethyl ester showed no significant
deviation from the reference data as shown in Fig. (6A) for the M1 model.

Works for methyl or ethyl ester content prediction during a transesterification reaction, calibrated and validated with
only  one  alcohol  to  oil  molar  ratio  were  developed  by  Lima  et  al.  [14],  obtaining  RMSEP  =  1.51%  with  6  latent
variables and 50 calibration samples, and also in the study presented by Pinzi et al. [18] obtained RMSEP = 2.55% with
3 latent variables and 79 calibration samples, and Richard et al. [21] reached a RMSEP = 3.52% for 9 latent variables
and 40 samples. In the present work, there are two models calibrated with data from only one molar ratio, the models
M5 and M6 which generated RMSEP = 2.41% for molar ratio of 6 and RMSEP = 2.86% for molar ratio of 9. These
results are quite good, comparable with the results presented by Pinzi et al. [18] for a methyl ester system, nevertheless,
we have used a much lower number of calibration samples.

Besides the final ester content estimation in a transesterification reaction, the developed PLS model can be used for
motoring  the  kinetics  of  the  transesterification  reaction  based  on  the  on-line  monitoring  data.  Fig.  (7)  depicts  a
comparison of estimated values based on the M1 model and the ester content measured by CG-FID for kinetic data at a
different molar ratio of reactants. The behavior is similar to the one presented by Richard et al. [21] and the equilibrium
condition  is  reached  in  few minutes  of  reaction  justifying  the  use  of  a  technique  as  fast  as  NIR associated  to  PLS
regression model for on-line monitoring purposes.

Fig. (7). Ethyl ester content during reaction time for R6 and R9 according to GC reference (R6 - triangles, R9 - circles) and on-line
NIR predictions using M1 model (open circle and triangle symbols).
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Using the models that provided the best prediction results for R6 (M5) and the model with best prediction results for
R9 (M2), the ethyl ester content during reaction time progress is presented in Fig. (8).

Fig. (8). Ethyl ester content during reaction time for R6 and R9 according to GC reference (R6 - triangles, R9 - circles) and on-line
NIR predictions using M5 (open triangles) and M2 (open circles) models.

It can be noted as the best fit for the prediction of ester contents during R6 and R9 reactions using the best models of
each reaction (Fig. 8). On the other hand, one can also conclude that a single model (such as M1) that is flexible enough
to predict both reactions can also adequately serve the purposes of monitoring (see Fig. 7).

In  general,  the  results  regarding  the  overall  ester  content  analysis  achieved  in  this  work  are  very  satisfactory
considering the following aspects:  first,  the models were developed from synthetic samples,  while most part  of the
authors perform the reaction at different conditions, collecting at the same time samples from reaction medium and NIR
spectrum, neutralizing samples instantaneously; second, models built for NIR spectra acquired at 20 ºC were able to
predict  data  from  a  reaction  at  55  ºC  and  third,  few  samples  were  necessary,  representing  laboratory  cost  saving.
Consequently, these results are encouraging, and show that the NIR strategy presented is robust enough and could be
applied at actual biodiesel production sites as an on-line monitoring tool applied to optimization of production.

3.2.2. Glycerol Content Prediction Model

During  the  analysis  of  the  synthetic  samples,  a  large  deviation  between  the  glycerol  results  from  the  UV-Vis
analysis and the expected results based on the mass fraction of this compound on the synthetic samples was observed.
Since the spectra of the synthetic samples can also be used to develop a calibration model for the glycerol content in the
sample, a model was developed, feeding the expected values of glycerol fraction from synthetic samples composition.

In Fig. (9) it can be noticed that most of the results of the glycerol contents of the UV-Vis analysis were below the
expected  values,  as  already  presented  in  section  3.1.  The  prediction  model  built  using  PLS  regression  used  the
wavenumber range of 5930 -  6181 cm-1,  4 latent variables,  RMSEC of 0.15%, RMSECV of 0.15% and RMSEP of
0.20% in relation to the percentage of glycerol in the sample.
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Fig. (9). Glycerol content by PLS calibration model and UV-Vis analysis.

The work of Pinzi et al. (2012) [18], focused on the use of NIR in the monitoring of biodiesel production and that of
Dorado et al. (2011) [8], focused on the use of NIR to attest the biodiesel quality, also present models to predict the
glycerol content. The Pinzi et al.  (2012) model presented RMSECV of 0.56% in relation to the mass percentage of
glycerol present in the sample, with 4 latent variables and RMSEP equal to 0.73% for validation of the model covering
glycerol  contents  of  0.32 to  3.38 in  percentage by mass.  Dorado et  al.  (2011)  used a  range of  glycerol  content  for
calibration  ranging  from 0.005  to  0.050  in  mass  percentage  and  the  model  associating  UV-Vis  and  NIR presented
RMSECV of 0.083%.

CONCLUSION

Several  PLS  regression  models  built  with  synthetic  samples  for  ethyl  ester  content  prediction,  based  on  NIR
measurements,  were  successfully  applied  for  on-line  monitoring  of  alkali-catalyzed  transesterification  reactions  of
soybean  oil  and  ethanol.  The  calibration  strategy  involved  the  preparation  of  29  synthetic  samples  to  mimic  the
biodiesel production at different ethanol to oil ratios, the collection of NIR spectra at room temperature (20 ºC) and PLS
regression to correlate NIR spectra with the ester content data. The wavenumber range used was narrow (6150 – 5941
cm-1)  and  the  calibration  model  was  able  to  provide  proper  predictions  of  ester  contents  during  transesterification
reactions  performed  at  55  ºC,  with  mean  error  values  (3.12%)  close  to  the  deviations  attributed  to  the  reference
technique (2.78%). Additionally, a calibration model was successfully built correlating the glycerol content (0 - 8.0
wt%) in the biodiesel and NIR data, with a standard error of prediction of 0.20%.

Results demonstrated that with relatively few experimental data, calibration models can be developed using off-line
measurements, showing that NIR is a fast and accurate technique for quantification, allowing an effective monitoring of
the reaction and reducing time and process cost in the ethyl biodiesel production.
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