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Abstract:

Background and Objectives:

The choice of a suitable pretreatment method and the adjustment of the pretreatment parameters for efficient conversion of biomass to value-added
products is crucial to a successful biorefinery concept. Pretreatment of corn cob using ZnCl2.4H2O/ Urea was carried out and optimized in this
study.

Methods:

Effect of pretreatment conditions on cellulose recovery, hemicellulose recovery during the pretreatment of corn cob using ZnCl2.4H2O/ Urea was
investigated  via  response  surface  methodology  approach  and  optimized  in  this  study.  Experimental  results  were  analysed  and  appropriate
predictive empirical linear models were developed for each response.

Results:

For cellulose recovery, time and temperature, and solvent concentration were significant factors. Hemicellulose recovery in the liquid fraction is
impacted  by  time  and  solvent  concentration,  while  lignin  recovery  is  affected  by  time  and  temperature.  Using  numerical  optimization  by
desirability function, optimum pretreatment conditions obtained were: 90 min, 120°C and concentration of 71.32%/28.68 (w/w) ZnCl2.4H2O/ Urea.
At  these  conditions,  the  predicted  recovery  for  cellulose,  hemicellulose  and  lignin  were  99.03%,  27.18%  and  72.43%,  respectively,  with  a
desirability of 0.902. The actual recovery was 91%, 29% and 68% for cellulose, hemicellulose and lignin, respectively, at the same conditions.

Conclusion:

These results indicate that the investigated variables have pronounced effect on the pretreatment of corn cob. Therefore, optimum conditions are
required for recovery of desired composition before conversion to value-added products.
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1. INTRODUCTION

To reduce our dependence on petroleum based sources and
mitigate  global  climate  change,  Alternative  and  renewable
fuels  derived  from  lignocellulosic  biomass  need  to  be
investigated [1]. The energy from lignocellulosic biomass can
be utilized directly through combustion to produce heat.  The
other  form  of  utilization  is  by  converting  and  upgrading
biomass  into more  valuable and usable forms such as fuel oil,
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fuel gas or higher value products for utilization in the chemical
industry [2].

Corn-cob  as  well  as  other  lignocellulosic  biomass,  are
composed mainly of cellulose, hemicellulose and lignin. Cellu-
lose is a crystalline structure formed from microfibrils which
are composed of glucose monomers linked by hydrogen bonds
while  hemicellulose  is  made  of  polymers  containing  mainly
xylose and arabinose monomers [3]. Lignin, on the other hand
acts  as  a  barrier  which  protects  cellulose  and  hemicellulose
from biological  degradation.  Lignin is  a heavily cross-linked
amorphous aromatic hetero polymer which consists of phenyl
propane  monomers  p-coumaryl  alcohol,  sinapyl  alcohol  and
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coniferyl  alcohol  linked  by  C−C  bonds  and  C−O−C  [4].
Therefore,  biochemical  conversion  of  biomass  results  in
reduced  greenhouse  gases  in  addition  to  the  reduction  of
harmful by-products. This bioconversion process consists of a
pretreatment step that breaks apart the major components of the
biomass, increasing the surface area for attack from enzymes to
produce  monosaccharide  sugars  such  as  glucose  and  xylose.
Thereafter,  a  fermentation  step  occurs  which  uses  microor-
ganisms to  produce  chemicals  such  as  ethanol,  succinic  acid
and lactic acid [5].

Developing  effective  pretreatment  methods  and  finding
optimal operating conditions can contribute to overcoming the
cost barriers of biomass utilization. To effectively utilise ligno-
cellulosic resources, new pretreatment technologies are needed
to  overcome  the  barriers  associated  with  the  conversion  of
biomass  to  chemicals  and  fuels  [6].  These  much  needed
breakthroughs include improvement of pretreatment processes
that are able to fractionate biomass to the main components of
lignin, cellulose and hemicellulose in high volumes in order to
improve overall biomass utilisation [7].

Modelling and optimization of pretreatment processes can
be carried out using methods such as One-Variable-At-A Time
(OVAT)  method,  artificial  intelligence  tools  such  as  Neural
Network (ANN), Genetic Algorithm (GA) [8], fuzzy logic, ant
algorithm and particle swarm optimization and mathematical
[9],  and  statistical-based  modelling  tools  such  as  Response
Surface  Methodology  (RSM).  The  OVAT  method  is  time-
consuming  and  fails  to  consider  any  possible  interaction
between the factors. Artificial intelligence tools such as ANN
and GA are  highly  efficient,  capable  of  handling  incomplete
data and deals  with non-linear problems at  high speeds [10].
ANN was used by Valim et al. (2017) and Valim et al. (2018)
to study the delignification process of  sugarcane bagasse via
hydrogen  peroxide  (H2O2)  and  supercritical  carbon  dioxide
(ScCO2),  respectively  [11,  12].  However,  there  are  several
limitations associated with these such as the data size required
to provide adequate information (>20) for the training of neural
networks.  Furthermore,  there  is  difficulty  in  determining  the
optimal factors which influence the model development stage
of  the  method  such  as  data  division  and  pre-processing,
network architecture suitability and validation of models [13].

Response Surface Methodology (RSM) is the most popular
statistically-based optimization strategy which uses a quadratic
polynomial model to establish optimal conditions [14]. RSM is
used in investigating the effects of individual as well as inter-
active effects of factors in a process. An efficient alternative to
factorial  design  is  Central  Composite  Design  (CCD),  this
design  is  popularly  used  for  second  order  response  surfaces
[15].  Determining  the  optimal  operating  conditions  for
effective pretreatment techniques can contribute to overcoming
the cost barriers associated with the use of biomass by reducing
the number of experimental trials needed to evaluate multiple
parameters and their interactions [16]. RSM has been success-
fully  applied  in  the  study  and  optimization  of  chemical
pretreatment  by  ionic  liquids  [17],  alkaline  peroxide  [18],
alkaline  and  dilute  acids  [19].  In  addition,  the  Central  Com-
posite Design (CCD) of RSM has previously been successfully
applied in the optimization of several pretreatment processes
[5, 9].

Previously, a pretreatment solvent (ZnCl2.4H2O/Urea) was

identified  that  effectively  fractionated  the  corn  cob  into
cellulose,  hemicellulose  and  lignin  with  high  recovery  of
cellulose  in  the  solid  fraction  and  high  recovery  of  hemi-
cellulose in the liquid fraction. The optimization of the solvent
and the conditions under which the solvents operate are widely
important, not only for the overall improvement of the process
but  also from an economic perspective.  The improvement  of
the  pretreatment  would  increase  the  yield  and  quality  of
products from downstream processes such as enzymatic hydro-
lysis and fermentation [20].

In this study, the effect of pretreatment conditions (time,
temperature  and  solvent  concentration)  on  the  use  of  ZnCl2.
4H2O/ Urea molten hydrate was investigated and optimized for
the fractionation of corn cob. RSM was adopted to investigate
the  effect  and  optimize  the  pretreatment  conditions  for  frac-
tionating cellulose, hemicellulose and lignin of corn cob. The
main  and  interaction  effects  of  the  parameters  were  studied.
CCD, a class of three level complete factorial design was used
as  a  design  experiment  which  considered  pretreatment  time,
temperature  and  solvent  concentration  as  the  independent
variables and the responses were % recovery of cellulose,  %
recovery of hemicellulose and % recovery of lignin.

2. MATERIALS AND METHODS

2.1. ZnCl2.4H2O/ Urea Pretreatment

The pretreatment was carried out at varying temperatures
(60-90  °C)  in  a  shaking  incubator  for  varying  times  (60-120
min) using ZnCl2.4H2O/ Urea at  varying concentration ratios
(50-90% w/w) (Table 1) at a constant biomass to solvent ratio
of 1:10 (5 g dry biomass will be added to 50 g of each solvent)
and  at  a  constant  agitation  speed  of  270  rpm.  The  slurries
obtained from each pretreatment method were recovered and
separated into solid and liquid fractions by vacuum filtration.

2.2. Compositional Analysis of Solids
The compositional analysis of biomass were analysed for

hemicellulose,  lignin,  extractive  and  ash  content  as  docu-
mented by the National Renewable Energy Laboratory (NREL)
following  Laboratory  Analytical  Procedures  (LAP  TP-510-
42618,  42619,  42622)  [21  -  23].

2.3. Experimental Design
The experimental design is shown in Table 1, the experi-

mental data were analysed using RSM to fit the second order
polynomial  equation  created  by  Design-Expert  7  software
(Stat-Ease  Inc.,  USA)  The  parameters  were  selected  for  the
studies  as  follows:  reaction  temperature  (60-90°C),  ZnCl2.
4H2O/ Urea molar ratio (50- 90% w/w) and time (60-120 min).
The  variable  ranges  are  shown  in  Table  1.  The  ranges  were
selected to keep the intervals within mild reaction conditions.
Table 1  describes the five coded levels (−α, −1, 0, 1, α) and
un-coded  independent  factors,  the  test  ranges  for  the
parameters  and  the  overall  experimental  design.  The  CCD
design made up of 20 experiments (8 factorial points, 6 centre
points and 6 axial point) were carried out with three variables
and  each  variable  varied  at  three  levels  to  allow  for  the
evaluation of the curvature [24]. The value of α is the distance
from the axial points to the central point α= (2n) 1/4, in which
n is the number of independent factors, for three factors α=1.68
[25]. The factorial design experiments were run in duplicates to
ensure reliability; the average error was calculated and used.
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Table 1. Independent variables and their levels in the experimental design.

Independent Variable Symbols Unit Code Levels
- - - -1.68 (-α) -1 0 1 1.68 (+α)

Time A min 39.55 60 90 120 140.45
Temperature B ᵒC 49.77 60 75 90 100.23

Solvent concentration C % 36.36 50 70 90 103.64

2.4. Model Formulation and Statistical Analysis
The  experimental  data  was  used  to  develop  a  quadratic

polynomial  model  having  %  cellulose  recovery  (Y1),  %

hemicellulose recovery in the liquid fraction (Y2) and % lignin
recovery  (Y3).  The  general  regression  model  (Eq.  (1))  was
adopted.

(1)

Where A,  B, C  represent  the symbols  of  the independent
variables,  temperature,  time  and  solvent  concentration,
respectively. α; α1, α2 and α3 are the regression coefficients for
the linear terms of the expression and α11, α22, α33α12, α13 and α23

are  the  regression  coefficients  for  the  quadric  terms  of  the
equation. All experiments were done in duplicate and average
values  were  calculated  and  used  in  the  development  of  the
model. The statistical analysis, plotting of the response surfaces
and  the  optimization  were  performed  using  “Design  Expert”
software  (Trial  version  7.0.3,  Stat-Ease,  Inc.,  Minneapolis,
USA). The fit quality of the polynomial equation was assessed
by the coefficient of determination (R2), the significance of the
regression and statistical coefficient was checked using t-test
and  F-test,  respectively.  The  predictability  of  the  developed
model was then cross validated using laboratory experiments.

2.5. Desirability Function
Numerical  optimization  by  desirability  function  was

carried out to optimize the operating conditions of the pretreat-
ment.  The  desirability  function  technique  can  be  used  to
determine the optimum conditions of a process which involves
one or more responses. The desirability procedure first deter-
mines  the  independent  variable  levels  that  simultaneously
produce the most desirable prediction for the responses, there-
after the overall desirability of the outcome is maximised based
on the factors which can be controlled.

In numerical optimization, the desired goal for each factor
and response was chosen. The goals defined were as follows:
maximise, minimise, target, exact value (for factors only), none
(for responses only) and within range. Maximum and minimum
levels  for  each  factor  were  chosen.  The  factors  can  also  be
weighted according to priority. The goals were combined to get
a desirability function. The desirability function is an objective
value ranging from zero (outside the goal) and one representing
the goal,  the program thus aims at  maximising this  function.
The  goal  seeking  step  starts  randomly  from  one  point  and
makes its way to a maximal point through the steepest slope.

3. RESULTS AND DISCUSSION

3.1. Central Composite Design Studies

CCD was  employed  using  the  Design-Expert  (Stat-Ease,

Inc.,  Minneapolis,  USA)  software  to  study  the  simultaneous
effects of reaction time, temperature and solvent concentration
of pretreatment on cellulose recovery, hemicellulose recovery
in  the  liquid  fraction  and  lignin  recovery.  The  experimental
conditions  were  obtained  by  a  complete  three-factor  experi-
mental  design,  which  included  six  replications  of  the  centre
point  and  six  axial  points  and  eight  factorial  points.  Table  2
shows the series of conditions of the experiments conducted for
each run.

3.2. Composition of Solid Fraction

The detailed recovery of the components of ZnCl2.4H2O/
Urea treated solid fraction for each run are shown in Table 2.
The highest solids recoveries of cellulose for the pre-treatment
were  obtained  in  run  10  (39.55  min,  75  oC,  70/30%  (w/w)
ZnCl2.4H2O /urea)  and  12  (90  min,  49.77  oC,  70/30% (w/w)
ZnCl2.4H2O /Urea) with 87.6% and 86.1%, respectively. This
shows that cellulose is not less affected by the severity of the
pretreatment  as  opposed  to  hemicellulose.  Hemicellulose
recoveries were lowest at run 8 (120 min, 90°C, 90/10% (w/w)
ZnCl2.4H2O/Urea)  and  for  run  4  (90  min,  49.11  °C,  70/30%
(w/w) ZnCl2.4H2O /Urea). These severities are considered high
due to longer times and higher temperatures. This is in agree-
ment with the various studies which state that hemicellulose is
more susceptible to pretreatment conditions [26]. Additionally,
the lowest lignin recovery for the trials were obtained during
run 3 (60 min, 75, 50%), 4 (60 min, 100.23°C, 70/30% (w/w)
ZnCl2.4H2O  /Urea)  8  (120  min,  90°C,  90/10%  (w/w)
ZnCl2.4H2O  /Urea).

3.3. Models and Statistical Analysis

The  experimental  data  was  analysed  using  the  Design-
Expert software and a second-order polynomial equation was
obtained.  The  equation  included  linear,  quadratic  and  inter-
active terms for the variables tested. The polynomial equations,
describing the cellulose recovery (Y1), hemicellulose recovery
(Y2) and lignin recovery (Y3) as a function of reaction time (A),
temperature (B) and solvent concentration (C) of ZnCl2.4H2O/
Urea MHS pretreatment are shown in Eq. (2), Eq. (3) and Eq.
(4):

(2)

 
𝑌 =  𝛼0 +  𝛼1𝐴 +  𝛼2𝐵 +  𝛼3𝐶 + 𝛼12𝐴𝐵 +  𝛼13𝐴𝐶 + 𝛼23𝐵𝐶 +  𝛼11𝐴2 +  𝛼22𝐵2 + 𝛼33𝐶2 +𝜀  

 

 
𝑌1(%) =  +88.31 + 2.87𝐴 + 6.55𝐵 − 6.40𝐶 + 0.52𝐴𝐵 − 1.81𝐴𝐶 − 15.24𝐵𝐶 + 0.22𝐴2 −
2.88𝐵2 − 0.15𝐶2                                                                                                                                    
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(3)

(4)

Table 2. Experimental responses of the dependent variables after pretreatment using central composite design.

Run Variable - Response

- A: Time
(min) B: Temperature (°C) C: Concentration (%)

Y1:
Cellulose Recovery

(%)

Y2:
Hemicellulose Recovery

(%)

Y3:
Lignin Recovery (%)

1 60 60 50 57.487 15.220 45.903
2 120 60 50 74.779 16.727 48.612
3 60 75 50 88.874 17.418 63.182
4 90 100.23 70 95.097 21.928 63.532
5 60 60 90 80.921 10.150 44.640
6 120 60 90 83.765 19.137 50.701
7 60 75 90 100.220 15.265 62.986
8 120 90 90 88.359 29.473 63.112
9 39.55 75 70 73.056 12.741 49.193
10 140.45 75 70 99.030 19.682 56.694
11 90 49.77 70 64.434 9.5438 43.350
12 90 100.23 70 96.729 19.459 56.409
13 90 75 36.36 71.993 14.009 49.943
14 90 75 103.64 94.561 20.753 55.441
15 90 75 70 80.192 14.728 49.319
16 90 75 70 78.353 16.903 50.018
17 90 75 70 81.149 20.438 52.334
18 90 75 70 84.803 16.269 48.437
19 90 75 70 86.734 13.168 51.740
20 90 75 70 87.210 15.220 51.597

Table 3. ANOVA Analysis for Responses Y1 [Cellulose recovery (%)].

Source Sum of Squares Degree of Freedom Mean Squares F-values p-value
Prob > F

Model 1934.95 9 214.99 10.23 0.0006
A 71.26 1 71.26 3.39 0.0953
B 34.03 1 34.03 1.62 0.2319
C 62.64 1 62.64 2.98 0.1149

AB 2.26 1 2.26 0.11 0.7495
AC 49.57 1 49.57 2.36 0.1555
BC 316.45 1 316.45 15.06 0.0031
A2 10.84 1 10.84 0.52 0.4889

B2 18.75 1 18.75 0.89 0.3671

C2 0.14 1 0.14 6.547E-003 0.9371
Residual 210.10 10 21.01 - -

Lack of Fit 140.97 4 35.24 3.06 0.1073
Pure error 69.13 6 11.52 - -

Total 2145.05 19 - - -

𝑌2(%) =  +18.67 + 1.79𝐴 + 4.62𝐵 + 3.15𝐶 + 0.35𝐴𝐵 + 1.72𝐴𝐶 + 3.37𝐵𝐶 + 0.075𝐴2 +
0.14𝐵2 + 1.12𝐶2                                                                                                                                                                                

𝑌3(%) =  +61.00 − 1.49𝐴 + 14.08𝐵 + 3.24𝐶 − 1.90𝐴𝐵 + 1.02𝐴𝐶 + 2.23𝐵𝐶 + 0.31𝐴2 +
1.36𝐵2 + 1.77𝐶2                                                                                                                                                                                                                                 
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Table 4. ANOVA Analysis for Response Y2 [Hemicellulose recovery in the liquid fraction (%)].

Source Sum of Squares Degree of Freedom Mean Squares F-values p-value
Prob > F

Model 326.75 9 36.31 6.45 0.0037
A 27.84 1 27.84 4.95 0.0503
B 16.96 1 16.96 3.01 0.1132
C 15.20 1 15.20 2.70 0.1313

AB 1.04 1 1.04 0.18 0.6768
AC 44.91 1 44.91 7.98 0.0180
BC 15.42 1 15.42 2.74 0.1288
A2 1.28 1 1.28 0.23 0.6438

B2 0.045 1 0.045 7.919E-003 0.9308

C2 7.18 1 7.18 1.28 0.2851
Residual 56.27 10 5.63 - -

Lack of Fit 22.48 4 5.62 1.00 0.4761
Pure error 33.79 6 5.63 - -

Total 383.02 19 - - -

Table 5. ANOVA Analysis for Response Y3 [Lignin recovery (%)].

Source Sum of Squares Degree of Freedom Mean Squares F-values p-value
Prob > F

Model 674.73 9 74.97 9.18 0.0009
A 19.38 1 19.38 2.37 0.0504
B 157.40 1 157.40 19.27 0.0014
C 16.11 1 16.11 1.97 0.1905

AB 30.88 1 30.88 3.78 0.0805
AC 15.90 1 15.90 1.95 0.1932
BC 6.75 1 6.75 0.83 0.3847
A2 20.94 1 20.94 2.56 0.1404
B2 4.17 1 4.17 0.51 0.4912
C2 18.00 1 18.00 2.20 0.1685

Residual 81.67 10 8.17 - -
Lack of Fit 44.35 4 11.09 1.78 0.2508
Pure error 37.32 6 6.22 - -

Total 756.41 19 - - -

Eqs. (2 - 4) are predictive regression models that could be
used to explain the main effect of the individual variables and
as well  as  the interactive effect  on the responses considered.
Furthermore, it could be explained that the nega-tivity of the
regression  coefficients  indicates  (as  a  rule  of  thumb)  the
negative  effect  of  the  factors  on  the  responses  (decrease  the
response).  For  example,  solvent  concentration  (C)  decreases
cellulose recovery (Y1). Whereas the positivity of the regression
coefficients indicates (as a rule of thumb) the positive effect of
the factors on the responses (enhancement in the quantity of the
response).

3.3.1. Analysis of Variance

The significance of the developed model, the pretreatment
variable (linear and quadratic) as well as the interaction effects
were analysed using one-way Analysis of Variance (ANOVA).
ANOVA  is  a  tool  used  to  test  the  statistical  significance  of
each variable by comparing the estimated experimental error to

the  mean  square  [27].  The  p-value  showed  that  some  terms
where  significant  while  others  were  not.  However,  all  the
coefficients  were  considered  in  the  design  and  polynomial
equation  to  minimise  the  error.  The  results  of  ANOVA  for
cellulose  recovery,  hemicellulose  recovery  in  the  liquid
fraction  and  lignin  recovery  after  ZnCl2.4H2O/Urea  pretreat-
ment are presented in Tables 3, 4 and 5 respectively.

The model analysis gave F-value of 10.23, 6.45 and 9.18
for  cellulose  recovery,  hemicellulose  recovery  in  the  liquid
fraction and lignin recovery respectively. This implies that the
models are significant for each of the responses. The F-value of
the model is calculated as the ratio of mean square values for
individual  terms to  the mean square values for  the residuals.
The  Prob  >  F  represents  the  probability  of  the  F-statistics
value. This is used as a test for the null hypothesis. For a model
to be considered significant, the p-value needs to be lower than
0.05, this value indicates that there is only a 5% chance that the
models the values represent could occur due to noise [27]. The
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Table 6. Model summary for responses.

Response Standard Deviation Mean C.V.% PRESS Adeq-precision
Cellulose recovery (%) 4.58 82.39 5.56 1460.56 12.91

Hemicellulose recovery (%) 2.37 16.91 14.03 300.85 11.59
Lignin recovery (%) 2.86 52.86 5.41 497.61 9.67

models  of  cellulose  recovery,  hemicellulose  recovery  in  the
liquid  fraction  and  lignin  recovery  are  significant  and
effectively  describe  the  responses.  The  cellulose  recovery
response  model  has  a  lower  p-value  (0.0006)  than  the
hemicellulose  recovery  in  the  liquid  fraction  model  (0.0037)
and lignin recovery model (0.0009) indicating that the model
for cellulose recovery is most significant.

In  Table  3,  A  (Time)  and  BC  (Temperature  *  solvent
concentration) are significant model terms in the model Eq. (2)
and they significantly affect cellulose recovery, while the other
coefficients do not influence cellulose recovery greatly in the
range  of  this  study.  The  results  are  in  accordance  with  the
observation  that  cellulose  dissolution  only  takes  place  under
harsh conditions such as high temperatures [28]. A (Time) and
AC (Time * solvent concentration) as seen in Table 4 also have
significant effects on model Eq. (3), they therefore significantly
affect hemicellulose recovery in the liquid fraction while the
other  factors  do  not.  The  solvent  concentration  influence  is
second  order  however  there  has  been  evidence  showing  the
cellulose solvent (NaOH) concentrations having an impact on
Hemicellulose  dissolution  [29].  For  lignin  dissolution,  the
coefficients  which are  significant  in  the  model  are  A (Time)
and B (Temperature).  This  is  in  agreement  with Vancov and
McIntosh (2011) who noted that in the case of delignification,
even  in  mild  alkaline  solvent  conditions,  an  increase  in  the
temperature improves the delignification rate [30].

The  “Lack  of  Fit  F-value”  of  3.06,  1.00  and  1.78  for
cellulose  recovery,  hemicellulose  recovery  in  the  liquid
fraction and lignin recovery respectively, implies the lack of fit
is not significant when in relation to the pure error. The “Lack
of  Fit  F  value”  is  not  significant  and there  is  only  a  10.73%
(Table 3),  47% (Table 4)  and 25% (Table 5)  chance that  the
large values of F could have occurred as a result of noise.

3.3.2. Model Summary

Table 6 shows the model summary for each response. The
Coefficient of Variability (C.V) measures residual variations of
the data in relation to the size of the mean. Higher C.V values
usually indicate lower reliability while relatively low values of
C.V indicate better reliability and precision of the conducted
experiments.  The  C.V%  was  a  low  value  of  5.56%,  14.03%
and  5.41% for  cellulose  recovery,  hemicellulose  recovery  in
the  liquid  fraction  and  lignin  recovery  respectively  which
indicates  that  the  experiments  conducted  were  reliable  and
precise.  The  value  of  the  signal-to-noise  ratio  (adequate
precision  ratio)  was  found  to  be  12.919,  11.593  and  9.672
indicating the models have an adequate signal.  The adequate

precision ratio and adjusted determination coefficient (Adj R2)
exceeded  4  and  0.70,  respectively  for  all  three  models.  This
indicates  that  a  good  correlation  between  input  and  output
variables could be drawn by the model developed and it was
implied that the quadratic model could be used to explore the
design  space,  predict  the  responses  and  find  the  optimal
conditions  of  this  process.

3.3.3. Pareto Analysis

The percentage effect of each of the factors was done by
the Pareto analysis [16]. The analysis calculates the percentage
effect  (Pi)  of  each  factor  on  the  response,  according  to  the
following equation:

(5)

Where  βi  is  the  regression  coefficient  of  each  process
variable.

Figs. (1, 2 and 3) shows the Pareto plot. As seen in Fig. (1)
under the ZnCl2.4H2O/ Urea pretreatment, the most significant
factor  in  cellulose  recovery  are  B  (Temperature)  and  C
(Solvent  concentration)  in  both  linear  and  interactive  forms.
The interactive form (AB) however has the highest influence of
69.07%.  Hemicellulose  recovery  in  the  liquid  fraction  was
mainly  affected  by  temperature  (linear  term),  followed  by
interactive term (BC), solvent concentration (linear term), time
(linear term) and interaction of time and temperature. Finally,
lignin recovery was affected primarily and almost entirely by
temperature  (linear  term)  with  88.72%  effect.  Followed  by
solvent  concentration  (linear  term)  at  4.7%.  The  highest
interactive term was temperature*solvent concentration (BC)
with 2.2% effect on lignin recovery.

3.3.4. Model Fitting

The  reliability  of  the  predicted  models  was  additionally
tested by comparing the predicted and experimental response
results.  The  observed  recovery  from  the  experiment  and  the
predicted values are shown and represented as a parity plot in
Fig.  (4)  with  the  R2  values  for  each  response.  In  each  case,
there was satisfactory correlation between the predicted values
and  observed  values  from  the  experiment  which  was
R2=0.9021,  0.8531,  0.8920  for  Figs.  (4A,  4B  and  4C),
respectively. The values indicate close agreement between the
experimental and predicted values for each response. In Figs.
(4A, 4B, 4C), 9.8%, 14.69% and 22.3% of the total variation,
respectively, was not explained by the model.
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Fig. (1). Pareto chart showing the percentage effect of each factor in cellulose recovery.

Fig. (2). Pareto chart showing the percentage effect of each factor on hemicellulose recovery in the liquid fraction.
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Fig. (3). Pareto chart showing the percentage effect of each factor on lignin recovery.

3.4. Influence of Pretreatment Parameters Combinations

The three-dimensional response surface plot described by
the above-mentioned polynomial Eq. (2), Eq. (3) and Eq. (4)
were fitted to the experimental data as represented in Fig. (4).
One of the variables was kept constant (at midpoint) while the
other two variables were varied according to the experimental
ranges  determined  previously.  The  shapes  of  the  response
surfaces  indicate  the  type  and  amount  of  the  interaction
between the different independent variables [31]. The surface
plots for the cellulose, hemicellu-lose and lignin recovery are
shown  in  Fig.  (5A,  5B  and  5C).  Fig.  (5A)  shows  that  the
pretreatment  temperature  had  the  major  increasing  effect  on
cellulose recovery. As seen in Fig. (5A), longer times result in
higher  cellulose  recovery only  for  the  pretreatment  at  higher
temperatures while the effect of longer pretreatment time was
negligible  at  lower  pretreatment  temperatures.  At  higher
solvent concentrations, cellulose reco-very increased, however,
as  the  concentration  increased,  the  effects  of  increasing
temperature  became  negligible  after  77  oC.  Overall,  the
cellulose recovery was maximum at 100.23% with only a small
increase when time is increased to approximately 90 min.

The response surface plots for the hemicellulose recovery
in  the  liquid  fraction  are  shown  in  Fig.  (5B).  The  results
showed  that  temperature  also  has  a  large  influence  on
hemicellulose recovery in the liquid fraction. Fig. (5B) shows a
decrease in the recovery of hemicellulose in the liquid fraction
with increasing concentration until 75% where an increase is
observed thereafter. The largest recovery in the liquid fraction
is  observed  at  higher  concentration  and  longer  time.  In  Fig.
(5B), it was observed that at lower concentrations, the effect of

temperature  is  negligible.  While  at  lower  temperatures,  the
effect of concentration is negligible. However, at higher tem-
peratures  and  concentrations,  we  notice  an  increase  in  the
hemicellulose recovery in the liquid fraction. As expected, the
recovery of hemicellulose is highly dependent on the severity
of  the  experiment.  This  is  in  agreement  with  various  other
studies which have shown a dependence of hemicellulose on
severity compared to the other components [32]. The graph of
the  interaction  between  concentration  and  temperature  (Fig.
5B)  gives  the  maximum  recovery  of  24.6%  at  100%  con-
centration, 100.23 oC and time at the midpoint of 75 minutes;
these  are  the  best  conditions  for  achieving  high  yields  of
recovered hemicellulose in the liquid fraction.  This validates
the results of the Pareto chart in Fig. (2) where Temperature*
Solvent  concentration (BC) had the highest  interactive influ-
ence on the response.

Fig. (5C) represents the effects of temperature and time on
lignin recovery at a constant solvent concentration of 75%. An
increase in temperature resulted in a linear increase in lignin
recovery.  The  length  of  time  had  no  influence  on  the  lignin
recovery at lower temperatures; however, the lignin recovery
was maximal at shorter times. Results in Fig. (5C) shows that
an increase in time caused a linear decrease in lignin recovery
at  low  solvent  concentrations,  however  at  higher  solvent
concentrations;  there  is  a  slight  decrease  in  lignin  recovery
with  increasing  time.  Solvent  concentration  at  shorter  times
resulted  in  a  decrease  in  lignin  recovery  until  approximately
62.50% thereafter, an increase in lignin recovery was observed.
Fig. (5C) shows the effect of temperature and concentration on
lignin recovery at a constant time of 75 min. Solvent concen-
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Fig. (4). Parity plot showing distribution of predicted vs. actual values of responses. (A) Cellulose recovery. (B) Hemicellulose recovery in the liquid
fraction. (C) Lignin recovery.
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Fig. (5). Response surface plot showing effect of pretreatment conditions on (A) Cellulose recovery. (B) Hemicellulose recovery (C) Lignin recovery.
Midpoint conditions 75%/25% (w/w) ZnCl2.4H2O/ Urea, 75 °C, 75 min.
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Fig. (6). Desirability ramp of cellulose recovery, hemicellulose recovery in liquid fraction and lignin recovery.

tration has a negligible effect on the recovery of lignin at lower
temperatures.  There  is  however  a  slight  increase  in  lignin
recovery with increasing concentration. Temperature has a lin-
ear  effect  on  lignin  recovery  as  the  increase  in  temperature
results  in  an  increase  in  the  response  at  both  high  and  low
solvent concentrations. Figure 4.8C shows the highest amount
of recovery (69%) and this agrees with the Pareto chart (Fig. 3)
where  BC is  shown to  have  the  highest  interactive  effect  on
lignin recovery

3.5. Optimization by Desirability Function

The  mathematical  model  which  was  developed  from  the
experimental  data can be used for  the effective prediction of
the operating conditions which should be used for the optimi-
zation of the model responses. The strategy that was used can
determine the pretreatment temperature, pretreatment time and
solvent  concentration,  which  leads  to  maximum  responses.
Desirability  Function  (DF)  assigns  a  scale-free  value  to  all
responses  in  the  problem  by  the  so-called  individual  desir-
ability  functions  and  then  combine  these  values  by  usually
taking  their  geometric  mean  to  obtain  an  overall  desirability
function  as  a  single  objective  [27].  This  multiple  response
numerical  method  was  applied  for  the  optimization  of  any
combination of three factors (time, temperature, concentration).
Fig. (6) was obtained from design expert analysis and demons-
trates  the  desirability  values  of  the  numerical  optimization
procedure in which the criteria were set as follows: “in range”
for time (60 min), “in range” for temperature (70-120°C), “in
range” for concentration (50-90%) the objective was to opti-
mize (maximize) the responses, cellulose recovery, hemicellu-
lose  recovery  in  the  liquid  fraction  and  lignin  recovery  to
analyse economically viable optimal conditions. A variety of
solutions  were  found  however  the  best  local  maximum  was
shown  as  a  desirability  plot  (Fig.  6).  The  desirability  plot
shown in Fig. (6), provides the optimized treatment conditions

of 90 min, 120°C and concentration of 71.32% (w/w) ZnCl2.
4H2O/ Urea. At this condition, cellulose recovery was 99.03%,
hemicellulose recovery in the liquid fraction was 27.18% and
lignin recovery was 72.43% and desirability was 0.902. These
optimum  values  were  cross  validated  experimentally  which
resulted in 91% cellulose recovery,  29% hemicellulose reco-
very in the liquid fraction and 68% lignin recovery at the same
conditions. These values indicate the suitability and accuracy
of  the  model.  Apparently,  the  recovery  of  cellulose  needs
different  conditions  compared  to  hemicellulose  recovery  in
liquid fraction and lignin recovery. These were the best condi-
tions to favourably optimize all three responses.

The  optimized  value  for  the  solvent  concentration  is
71.32%  (w/w)  ZnCl2.4H2O/  Urea.  This  low  solvent  concen-
tration is  advantageous as it  reduces the viscosity of the sol-
vent. This reduces some challenges, which are usually encoun-
tered  with  higher  concentrations  of  MHS.  The  optimized
temperature  of  120°C  is  higher  than  the  glass  transition
temperature of both lignin and hemicellulose, which are 40°C
and from 50°C – 100°C, respectively. This temperature is thus
expected  to  delignify  the  biomass  as  well  as  increase  the
dissolution of hemicellulose to an extent [33]. The pretreatment
time  of  90  min  is  desirable  as  it  is  expected  to  reduce  the
degradation of the polysaccharide components (cellulose and
hemicellulose) which results in an increase in polysaccharide
yield  and  decrease  in  fermentation  inhibitors.  The  obtained
desirable conditions differ largely from those obtained in the
pretreatment  of  wheat  straw  using  ionic  liquid  pretreatment.
The conditions found in the study performed by Fu and Mazza
were  158°C,  49.5%  ionic  liquid  concentration  and  216  min
[34]. The large difference in the optimal conditions is caused
by  the  responses  for  the  optimization  being  based  on  the
recovery  of  fermentable  sugars  in  the  pretreatment  of  wheat
straw  as  opposed  to  whole  fractions  of  the  components  as
calculated in this study [34].
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CONCLUSION

The  effect  of  dissolution  parameters  (solvent  concen-
tration,  reaction  time  and  temperature)  on  the  pretreatment
efficiency. Appropriate predictive empirical linear models were
developed for each response (cellulose recovery, hemicellulose
recovery in the liquid fraction and lignin recovery). The effects
of the individual variables and their interactions were found to
be  statistically  significant.  The  results  showed  that  the
quadratic  terms  among  the  investigated  variables  were
statistically insignificant. Time was shown to influence all the
responses  while  the  temperature  *  solvent  concentration
interaction and time * solvent concentration interaction were
shown  to  influence  cellulose  recovery  and  hemicellulose
recovery, respectively. Optimization resulted in 91% cellulose
recovery,  29%  hemicellulose  recovery  in  the  liquid  fraction
and  68%  lignin  recovery  at  mild  conditions  of  90  minutes,
120°C  and  71%/29%  (w/w)  ZnCl2.4H2O/  Urea.  This  study
demonstrates  optimization  of  a  mild  lignocellulosic  biomass
pretreatment  method  that  enables  the  production  of  value-
added  products  from  cellulose,  hemicelluloses  and  lignin.
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