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Abstract: Residence time distribution (RTD) study of solids in a three-phase pilot-scale bubble column photoreactor has 

been carried out in order to provide data for the development of an artificial neural network model usable for process op-

timisation. The experimental data indicated that the RTD of solids was a complex nonlinear function of gas and liquid ve-

locities as well as the contacting pattern (co-current and countercurrent flow of gas and liquid). In this study, the solid par-

ticle RTD data were modeled using feed forward artificial neural networks (ANN). The networks were trained with 250-

sets of input-output patterns using back-propagation algorithm. The trained networks were tested using 50-sets of RTD 

data previously unknown to the networks. Out of several configurations, a 3-layered network with 6-neurons in its hidden 

layer yielded optimal results with respect to the validation data. The optimal model and empirical data exhibited good 

agreement with a correlation coefficient of 0.995. 
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INTRODUCTION 

 Due to their excellent heat and mass transfer characteris-
tics, three-phase bubble column reactors (BCRs) are the pre-
ferred reaction vessels for many chemical process operations 
including production of fine chemicals, coal liquefaction, 
wastewater treatment, photocatalytic and fermentation proc-
esses. The mixing of solids in a three-phase reactor is critical 
to its overall performance [1-3] and this is especially so in a 
photocatalytic bubble column reactor where the catalyst par-
ticles exposure to light and its distribution within the vessel 
impacts upon the local volumetric rate of photon absorption 
(LVRPA). Until recently, lumping approaches based on axial 
dispersion model (ADM) have been used to describe the 
residence time distribution (RTD) of solids within three-
phase reactors. Being a single-parameter model, ADM is 
relatively easy to use but does not account for other impor-
tant pathological phenomena (channeling, by-passing, dead-
zones, etc) in the BCR. In reality, solid particle dynamic 
behaviour in a BCR is a multiple-input-multiple-output 
(MIMO) system and in the absence of detailed mechanistic 
information, it is difficult to secure reliable and adequate 
model useful for predictive, control and optimization pur-
poses.  

 Kiared et al. [2] proposed a Cross Flow Multistage 
Stirred Reactors (CFMSR) model to describe solid phase 
RTD pattern in three-phase reactors. Their model was based 
on experiments conducted in a 10 cm ID bubble column  
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reactor. Using Radioactive Particle Tracking (RPT), they 
identified two different regions in the bubble column reactor, 
namely; an ascending wake region and a descending emul-
sion phase. In the CFMSR model, each region was approxi-
mated by a tank-in-series model with allowance for inter-
phase mass (solid) exchange (constant mass transfer coeffi-
cient) between both regions. Pareek et al. [3] performed 
RTD experiments on Aldrich titania particles in an 18-L pi-
lot scale reactor. They studied both co-current and counter-
current contacting of gas and liquid. Interestingly, the RTD 
curves from the co-current operation showed bimodal behav-
iour at relatively higher gas velocities. The solids mixing 
process of this operation was modeled as a parallel arrange-
ment of tanks-in-tandem and a plug-flow reactor with inter-
branch solid exchange. On the other hand, the RTD pattern 
for counter-current operation was modeled as a series of 
stirred-tank reactors with recycle stream. The analysis re-
vealed an evolution of different solid flow patterns even at 
constant fluid flow rate as evidenced from the time-
dependent behaviour of the intensity function. 

 Prediction of the solid phase dispersion is a challenging 
task since it depends on a large number of parameters such 
as gas and liquid velocities, particle size distribution, physi-
cal and transport properties of gas and liquid as well as reac-
tor size. Although the empirical models developed previ-
ously gave reasonably good predictions with mean square 
error between 3-10 %, the lack of a comprehensive frame-
work in which all these factors are explicitly related to reac-
tor performance indices limits their application for optimiza-
tion and control purposes. 

 In recent years, the concept of artificial neural nets 
(ANN) has received wide popularity in many areas of 
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chemical engineering [4]. The ability of ANN to recognize 
and reproduce cause-effect relationships through training, for 
complex multiple input-output systems, makes them efficient 
to represent complex systems [5]. Roedemerck et al. [6] 
have employed ANN to determine optimal catalyst composi-
tion for the oxidative dehydrogenation of propane. Gunay & 
Yildrim [7] also developed and optimized alumina-supported 
Pt-Co-Ce catalyst for selective CO hydrogenation in an H2-
rich stream using ANN modeling while Molga [8] has pre-
sented a generalised neural network approach for the model-
ing of catalytic reactors. In what follows, we demonstrate the 
deployment of the ANN technique to analyse and compre-
hensively model RTD data obtained from an 18-litre pilot 
scale reactor. A set of 300-RTD data points was used to train 
and test the neural nets [3]. The input layer of the neural nets 
consisted of liquid velocity, gas velocity, time and contacting 
scheme, and the output layer contained one neuron – the 
RTD function, E(t). 

EXPERIMENTAL DETAILS 

Apparatus 

 The system contains two concentric cylinders – an outer 
chamber ID=20 cm, and the inner cylindrical lamp, OD=5 
cm [3]. The liquid and gas velocities employed ranged from 
0.03-0.13 cm s

1
 and 0.05-0.5 cm s

1
 respectively. This en-

sured that all operations were carried out in the pseudo-
homogeneous flow regime and minimised the requirement 
for longer disengaging height (present height is about 25% 
of the liquid column, 70 cm, in the vessel) at higher liquid 
and gas flow rates as well as preventing damage to the frag-
ile co-axial UV quartz lamp in the reactor. Iwaki magnetic 
pump was used for liquid delivery while electronic mass 
flow controllers metered all gas flow rates. Air from the flow 
controller was passed upwards through the moving column 
of water via a 70μm stainless mesh distributor. For each pair 
of gas/liquid velocity combination, a 1g pulse of commercial 
titania powder was instantaneously injected at the column 
base and the concentration and size distribution of the parti-
cles at the outlet were monitored using Malvern Master-
sizer/E. Both co-current and counter-current combinations of 
gas-liquid flow modes were studied. 

Materials and Methods  

 Titania (>99% anatase) was obtained from Aldrich 
Chemicals and used as supplied in all runs. The nominal 
particle size of titania powder in aqueous slurry was between 
0.2 to 200 microns. Ordinary domestic water was used as 
liquid phase. Air at room temperature was used as the feed 
gas for the reactor.  

ARTIFICIAL NEURAL NETS (ANN) 

 The human brain is a natural example of the performance 
of a MIMO system and artificial neural net is an engineering 
attempt to mimic the way this versatile organ works. In hu-
man brain, billions of neurons are interconnected to process 
a variety of complex information. However, a computational 
neural network is much simpler than the human brain and 
consists of only a few dozens of neurons. A neural net con-
sists of simple processing units called neurons. A neuron is 
an entity capable of receiving and sending signals, and it is 
simulated by means of software algorithms on a computer. A 
typical artificial neural net is shown in Fig. (1). In general, a 

neural net is parallel interconnected structure consisting of, 
(1) input layer of neuron (independent variables), (2) a num-
ber of hidden layers, (3) and output layer (dependent vari-
ables). The number of input and output neurons is deter-
mined by the nature of the problem. The hidden layers may 
be considered as a processing or features-detecting device.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic diagram of the computational neural network. 

 

 The input layer acts like a feeder and it directly transmits 
the information to the hidden layer. The inputs to hidden and 
output-layers are calculated by performing a weighted sum-
mation of all the inputs received from the preceding layer. 
Generally, the output from the hidden layer is calculated by 
using a transfer function. The function should be monotonic, 
continuously differentiable and bounded. Among others, the 
logistic sigmoid transfer function is the most widely used [4, 
7]:  
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 Although it is possible to have several hidden layers in an 
ANN, according to the universal approximation theory, a 
network with a single hidden layer with a sufficiently large 
number of neurons can interpret any input-output structure 
[9, 10]. As a result, we have used only one layer of hidden 
neurons. The actual number of neurons in the hidden layer is 
determined by the desired accuracy in the neural predictions. 
Hence, it may be considered as a parameter for the neural net 
design. Mathematical expressions used for each of the layers 
in the feed-forward ANN model are summarised in Table 1.  

MODEL DEVELOPMENT 

 The development of an ANN model generally consists of 
three steps: (i) generation of input-output data for training 
and validation purposes; (ii) training of the neural net to op-
timise model parameters and (iii) the testing of neural nets. 
During the training step the net is exposed to a certain num-
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ber of input-output patterns and an objective function is used 
to minimise the errors in predicted and target values. Finally, 
in the testing step, the net is exposed to the patterns unfamil-
iar to it and the accuracy in the predictions is evaluated.  

Data Collection 

 Since an artificial neural net learns by examples, it is 
essential to have a large number of data sets to enable a valid 
net training. A representative training data set should include 
the cause-effect relationship between the input and output 

variables. In this case, the sets of training and testing data 
were taken from RTD experiments performed in the 18-L 
pilot scale reactor. Typical data patterns are shown in Fig. 
(2). Out of the 300 data points selected for this study, 250 
points were chosen for training the neural nets and the re-
maining 50 data points were used in the validation step.  

Training of Artificial Neural Nets 

The training of artificial neural nets (ANN) is essentially an 
optimisation process, where an error function is minimised 

Table 1. Summary of Input-Output of Neurons in a 3-Layered Feed Forward Neural Network 

Layer Neuron identity Input to the neuron Output from the neuron 
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Fig. (2). Typical residence time distribution curves. (a) Countercurrent flow of gas and liquid (VL = 0.06 cm s
–1

), (b) Countercurrent flow of 

gas and liquid (VL = 0.13 cm s
1
), (c) Co-current flow of gas and liquid (VL = 0.06 cm s

1
), and (d) Co-current flow of gas and liquid (VL = 

0.13 cm s
1
). 
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by changing the neural net weights. The most widely used 
error function is the total sum of squared-error defined as 
[11]: 
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where, the indices j and o refer to a pattern and output neu-
rons respectively.  

 Following exposure of the net to a new training pattern, it 
calculates the output using the input variables and the error 
given by equation (2). If the computed error is less than a 
pre-specified value, the training stops, otherwise the weights 
of neural net are adjusted and all the calculations are per-
formed again. In the present case, the back-propagation algo-
rithm was used to update the weights [12]. In this algorithm, 
for every input-output pattern, a forward-pass is used to cal-
culate the output and a backward-pass is used to adjust the 
weight. Firstly, the weights connecting hidden and output 
layers are adjusted using generalised delta rule [11]:  
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  and  are momentum and learning rate parameters 
(generally, their values are set between 0.6 an 0.9), index p 
refers to pattern number or iteration number. Similarly, the 
weights for the connections between input and hidden layer 
are updated:  
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where, ))(1( ,,,,, jojojojojo Tyyy=  is error gradient for 

the output layer. 

 In this study, over 40 neural net models were trained and 
tested using the 300 input-output patterns. As shown in Fig. 

(1), all the models developed consisted of three layers. The 
first layer was input layer and in this case it had 5–neurons 
(liquid velocity, gas velocity, particle size, time, and contact-
ing scheme: +1 if co-current, -1 if countercurrent). The sec-
ond layer was hidden layer and it contained variable number 
of neurons (2-20). The third layer was the output layer with 
one neuron (the RTD of solids).  

Selection of Optimal Net Configuration 

 Several net configurations with one hidden layer were 
trained using the input-output patterns. The trained nets were 
used to predict the RTD for 50 input data previously not 
known to the nets. Following error criteria were used to as-
sess the model predictions: 
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where, the index ‘j’ refers to validation pattern number and 
E  to average value of RTD data points.  

 A summary of various error measures, used to compare 
the net efficiency, is shown in Table 2. Mean absolute per-
centage error (MAPE) in all the cases was less than 10 % 
while correlation coefficients were generally greater than 
0.90, indicating that all the configurations studied in this 
work could efficiently represent the experimental data. How-
ever, a neural net with 6-hidden neurons was found to yield 
the most optimal results. The predicted RTD with this con-
figuration has been plotted against the actual RTD in Fig. 
(3). The correlation coefficient between the two data sets 
was 0.995, which is indicative of an excellent agreement 
between the predicted and actual data. The value of MAPE 
for this network configuration was 3.43, indicating the opti-
mality of this configuration.  

Table 2. Prediction Errors and Correlation Coefficients 

N
h
  Cp RMSE

 
MAPE (%)

 

2 0.893 0.07 8.73 

4 0.986 0.05 5.66 

6 0.995 0.03 3.43 

8 0.984 0.04 4.23 

10 0.991 0.03 3.56 

12 0.990 0.03 3.83 

Phenomenological models [3] 0.912 0.06 6.41 

RMSE: root mean square error. 
MAPE: mean average percentage error. 
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Comparison with Phenomenological Models  

 In our previous paper, we had reported two phenomenol-
ogical models for the co-current and countercurrent flow of 
gas and liquid [3]. As shown in Figs. (2a) and (2b), the RTD 
curves for countercurrent operation showed the usual uni-
modal behaviour. Therefore, the countercurrent RTD of solid 
particles was modeled as a series of stirred tanks with a recy-
cle stream. The relevant expression for the E-curve is given 
by [3]: 
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 However, as shown in Figs. (2c) and (2d), the RTD 
curves for the co-current operation showed a bimodal behav-
iour whose peaks decreased with decreasing gas flow rate. 
As a result, the solid flow dynamics was modelled by a se-
ries of CSTRs in parallel with a plug flow reactor. The 
model also admitted interphase solid transport between the 
wake and bulk liquid phase and the solid RTD may be writ-
ten: 
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Similarly, unsteady-state mass balance around the PFR sec-

tion yields, 
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where, the variables M1, M2, M3, M4, a and b are functions of 
gas and liquid superficial velocities and are defined else-
where [3]. 

 For the same 50-RTD data points used in the neural nets 
evaluation, equations (10) and (11) gave a correlation coeffi-
cient value of 0.912 as seen in Table 2. Although this indi-
cates a good fit, the predictions are less accurate than most of 
the neural net configurations examined in this study. This 
illustrates the superiority of neural nets in the prediction of 
complex, nonlinear behaviour such as that implicated in 
RTD of solid particles in three-phase reactors. 

Interpreting Neural Network Weights 

 The neural net weight matrix can be used to assess the 
relative importance of the various input variables on the out-
put variables (in this case RTD of solids). On partitioning of 
neural net connection weights, the relative importance of j

th
 

input variable on n
th

 output variable may be expressed as [9, 
13]: 
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 The relative importance of various variables as calculated 
by equation (14) is shown in Table 3 and as expected, it is 
clear that the gas-liquid contacting scheme, with relative 
importance of 30 %, had the most marked influence on the 
RTD of solid particles. With a relative importance value of 
20.4 %, the liquid velocity was found to be the second most 
important variable but closely followed the gas velocity and 
time with particle size being the least significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (3). Comparison between ANN predictions and actual RTD 

data. 

Table 3. Relative Importance of Variables Studied on the RTD of Solid Particles 

Variable Range  Relative importance 

Operation Co-current (+1) and Countercurrent ( 1) 30.0 % 

Gas velocity 0.05-0.5 cm s 1 18.3 % 

Liquid velocity 0.03-0.13 cm s 1 20.4 % 

Time 0-120 min 17.5 % 

Particle size 0.2-200 micron 13.8 % 
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CONCLUSIONS 

 A neural net modeling of solid particles RTD in a three-
phase reactor was carried out. A set of 300 input-output pat-
terns was used to train a number of 3-layered ANN configu-
rations having one hidden layer. The input layer of neurons 
consisted of 5 variables – gas and liquid velocities, particle 
size, time and contacting scheme. The hidden layer con-
tained a variable number of neurons. The output layer had 
only one neuron – the RTD of solid particles. When tested 
with arbitrarily selected 50 data points, most of the configu-
rations studied gave better results than the phenomenological 
model previously developed. However, a neural net with 1-
hidden layer having 6-neurons was found to be most optimal 
giving a correlation coefficient value of 0.995 and mean ab-
solute-percentage-error value of 3.43 %. A partitioning of 
the neural net weights was carried out to study the relative 
importance of the various input variables on the output vari-
able (RTD. The relative direction of the gas and liquid flow 
(co- or counter-current mode) was found to be the most im-
portant variable for solids RTD in the bubble column reactor. 
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NOMENCLATURE 

Cp  = Pearson correlation coefficient 

e = error 

E(t) = residence time distribution (RTD) of solids, 
min

–1 

Ea  = actual value of RTD, min
–1 

Ep  = predicted value of RTD, min
–1 

I = relative importance of a variable 

N = number of tanks in the series of tank model 

No  = total number of neurons in the output layer 

Nh = total number of neurons in the hidden layer 

Ni  = total number of neurons in the input layer 

Ns  = total number of input-output patterns 

R = recycle ratio in the series of tanks model 

t  = average experimental residence time of solids, 
min 

pt  = total residence time of solids in wake (PFR) in 
co-current RTD model, min 

To,j  = target or actual prediction from the n
th

 output 
neuron for j

th
 input-output pattern  

w = weights of neural connections 

x = input variable 

y = output variable 

Yo,j = neural net prediction from the n
th

 output neuron 
for j

th
 input-output pattern 

Subscripts 

i = refers to input layer variables 

h = refers to hidden layer variables 

o = refers to output layer variables 

Greek 

  = momentum parameter (0.6–0.9) 

  = learning rate parameter (0.6–0.9) 

 = fraction of solid particles which are transported 
via bulk liquid 

m = residence time of solids in one tank, min 

REFERENCES 

[1] M. Cassanello, F. Larachi, C. Guy, and J. Chaouki, “Solids mixing in gas-

liquid fluidized beds: Experiments and modeling”. Chem. Eng. Sci., vol. 51, 

pp. 2011-2020, 1996. 

[2] K. Kiared, F. Larachi, C. Guy and J. Chaouki, “Trajectory length and resi-

dence time distribution of the solids in three-phase fluidized beds”. Chem. 

Eng. Sci., vol. 52, pp. 3931-3939, 1997. 

[3] V.K. Pareek, Z. Yap, M.P. Brungs and A.A. Adesina, “Particle residence 

time distribution in three-phase annular bubble column reactor”. Chem. Eng. 

Sci., vol. 56, 6063-6071, 2001. 

[4] D.M. Himmelblau, “Application of artificial neural networks in chemical 

engineering”. Korean J. Chem. Eng., vol. 17, pp. 373-392, 2000. 

[5] J. Michalopoulos, S. Papadokonstadakis, G. “Arampatzis and A. Lygeros, 

Modeling of an industrial fluid catalytic cracking unit using neural net-

works”. Trans. IChemE, vol. 79, pp. 137-142, 2001. 

[6] U. Rodemerck, M. Baerns, M. Holena and D. Wolf, “Application of a ge-

netic algorithm and a neural network for the discovery and optimisation of 

new solid catalytic materials”. Appl. Surf. Sci. vol. 223, pp.168-174, 2004. 

[7] M.E. Gunay and R. Yildrim, “Neural network aided-design of Pt-Co-

Ce/Al2O3 catalyst for selective CO oxidation in hydorgen-rich streams”. 

Chem. Eng. J., 2008, In press. 

[8] E.J. Molga, “Neural network approach ot support modelling of chemical 

reactors: problems, resolutions, criteria of application”. Chem. Eng. Proc., 

vol. 43, 675-695, 2003. 

[9] A. Elkamel, S. Abdul-Wahab, W. Bouhamra and E. Alper, “Measurement 

and prediction of ozone levels around a heavily industrialized area: A neural 

network approach”. Adv. Environ. Res., vol. 5, pp. 47-59, 2001. 

[10] S.S. Tampe, B.D. Kulkarni and P.B. Deshpande, Elements of Artificial Net-

works with Selected Applications in Chemical Engineering, and Chemical 

and Biological Sciences, Louisville, KY, USA: Simulations and Advanced 

Control Ltd., 1996. 

[11] D.E. Rumelhart, G. E. Hinton and R.J. Williams, “Learning Internal Repre-

sentations by Error Propagation,” in Parallel Distributed Processing: Explo-

rations in the Microstructure of Cognition, vol.1, D. E. Rumelhart, J. L. 

McClelland, Eds., Massachusetts: MIT Press, 1996, pp. 318-362. 

[12] D.E. Rumelhart, G.E. Hinton and R.J. Williams, “Learning Representation 

by Back-Propagation Errors”. Nature, vol. 323, pp. 533-536, 1986. 

[13] G.D. Garson, “Interpreting Neural-Network Connection Weights”. AI Expert, 

pp. 46-51, April 1991. 

 

 

 

Received: February 04, 2008 Revised: March 24, 2008 Accepted: April 08, 2008 

 

© Pareek et al.; Licensee Bentham Open. 
 

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/license/by/2.5/), which 

permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 


