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Abstract: A novel method for determining the entropy associated with irreversible processes has been provided, differing 

from the conventional theory of irreversible thermodynamics. It permits the direct relation of heat and work transfers in ir-

reversible processes to those in reversible changes, in terms of measurable properties. The same technique is applied to 

the construction of thermodynamic state functions that are no longer limited to reversible phenomena. The results are then 

used to construct line integrals for the contribution of irreversible processes to the entropy associated with the flow of 

heat, work, and matter across a junction. Specific examples are provided to illustrate the procedure; they relate to changes 

of temperature and volume and to cycling of systems interacting with a reservoir via a thin barrier. 
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INTRODUCTION 

The proper formulation of entropy changes during irre-
versible processes has been the subject of numerous investi-
gations ever since the formulation of entropy as a function of 
state. It nevertheless seems appropriate to introduce an un-
conventional methodology through detailed calculations in-
volving the irreversible exchange of heat and work for a sys-
tem interacting with a reservoir through a thin intervening 
barrier. This problem is also of intrinsic interest. For this 
purpose we first derive fundamental information that is 
somewhat scattered in the literature, in which the commonly 
used inequalities in the second law are replaced with equali-
ties. We then apply these concepts to determine the increase 
in entropy during the irreversible processes in the above-
mentioned compound system. Several conclusions of interest 
are drawn. The present article represents an extension of 
earlier work in this area [1-5]. 

At the outset we introduce two basic assumptions. The 
object under study is an isolated compound unit consisting of 
a system anchored to its surroundings as sketched in Fig. (1), 
which shows the temperature profile in both parts of the unit. 
Corresponding profiles exist for the pressure and the chemi-
cal potentials. Processes in both sections are presumed to 
occur sufficiently slowly that one may assign uniform values 
T0, P0, μ0 to the temperature, pressure, and chemical potential 
over almost all the region in the surroundings, and corre-
sponding values T, P, μ over most of the region within the 
system. The changeover between the two sets of intensive 
variables is thus limited to a thin boundary region consisting 
of a poor thermal conductor imbedded in a slowly moving 
piston that also permits a slow diffusion of matter across its 
interface. The present situation is thus the exact opposite of 
the irreversible processes considered in the standard theory 
of irreversible thermodynamics, where T, P, and μ are locally 
functions of position within the system, and thereby relate to  
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the flow of heat, work, and matter through the system as a 
whole. By contrast, in the present case attention is directed to 
the transfer of these entities across an interface. 

The second restriction involves the commonly employed 
assumption that all processes in the surroundings (reservoirs) 
take place reversibly, whether the processes in the system 
occur reversibly or not. In the absence of this assumption the 
analysis becomes far more complex. Procedures carried out 
subject to the above qualifications are termed Quasistatic 
Irreversible Processes (QSIPs). 

BASICS 

To set up the fundamental expressions, consider an in-
finitesimal step in an interactive process - involving the sys-
tem and the reservoir - that is carried out reversibly (r) and 
irreversibly (i). Since the entropy, S, is a function of state, 
the infinitesimal change dS of the system is the same for 
both processes. However, the entropy change of the reservoir 
differs in the two cases, which we designate as dS0

(a)
 and 

dS0
(b)

, respectively. Since entropy is conserved in the re-
versible operation, we set 

dS + dS0
(a)

 = 0           (1a) 

On the other hand, when executing the same process ir-
reversibly, the entropy of the compound system can only 
increase, so that  

dS + dS0
(b)

 > 0           (1b) 

It is now apposite to introduce an entropy deficit function 
 > 0 which converts Eq. (1b) into an equality:  

dS + dS0
(b)

 -  = 0          (1c) 

While this may appear to be simply a bookkeeping opera-
tion it has important implications: a trivial rearrangement of 
the above equation leads to 

dSu  dS + dS0
(b)

 =          (1d) 

where Su represents the entropy of the universe, here the 
compound system. Eq. (1d) shows that the deficit function is 
equivalent to the entropy increase of the universe resulting 
from the execution of any (infinitesimal) irreversible proc-
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ess. Note that dS represents the differential entropy change 
for the system characterized by intensive variables which 
differ from those which relate to the surroundings.  

We now set dS = rQ/T and dS0
(b)

 = rQ0/T0 = - iQ/T0, 
where Q signifies the heat transfer into the system and T is 
its operating temperature. The second relation applies be-
cause of heat conservation in the isolated compound system. 
When these expressions are entered in (1c) one obtains the 
fundamental result 

iQ = (T0/T) rQ – T0  < (T0/T) rQ        (2a) 

The central equality duplicates the expression derived by 
a different method in Ref. [6].  

The constraint on the right may be tightened by noting 
that the inequality must be satisfied for any value of T  T0 
(T  T0) when heat flows from the system (reservoir) into the 
reservoir (system). In particular, it must apply to the limiting 
case T  T0. We thereby obtain the string of inequalities 

iQ < rQ < (T0/T) rQ          (2b) 

which are self evident for positive values of rQ, where T0/T 
> 1. Note that in the limiting case discussed above, the quan-
tity  in Eq. (2a) does not necessarily vanish [7]. For exam-
ple, the reversible heating of a sample may trigger chemical 
processes totally within the system that cannot be controlled 
from the outside. However, in the absence of such processes, 

rQ, is the sole applicable variable.  

For heat outflows, with T0/T < 1, the inequalities (2b) still 
hold; the quantities become progressively less negative from 
left to right. One should observe that the statement iQ < rQ 
is a reformulation of the well-known Clausius inequality. 

Eq. (2a) may also be recast in the familiar form as 

dS = iQ/T0 +  > iQ/T0          (2c) 

Note that it is the experimentally well established tem-
perature of the reservoir that enters the above relations. Eq. 
(2a) may be rewritten as 

iQ = rQ + (T0/T - 1) rQ – T0         (2d) 

which directly relates the two types of heat exchange proc-
esses. 

LOWER BOUNDS ON THE DEFICIT FUNCTION 

In the introduction of the deficit function we had origi-
nally set  > 0. A greater positive lower bound may be im-

posed by employing the condition iQ < rQ. Thus, the sum 
of the last two terms in Eq. (2d) must be negative. This im-
poses the requirement: 

 > [(T0 – T)/T0T] rQ = [(T0 – T)/T0]dS          (3) 

The right hand side is always positive. For if T0 > T (T0 < 
T), heat flows from the surroundings (system) into the sys-
tem (surroundings), so that rQ and dS are both positive 
(negative). In either case the right hand side is positive, thus 
establishing a positive lower bound that involves experimen-
tally accessible operating conditions. 

INEQUALITIES RELATING TO WORK PERFORM-
ANCE 

Information relating to work becomes available via the 
First Law in the form 

dE = rQ + rW = iQ + iW          (4) 

where E is the energy of the system and iW is the element 
of work performed in an infinitesimal step of an irreversible 
process. Eq. (4) holds because E is a function of state. Now 
introduce Eq. (2d) and solve for 

iW = rW - (T0/T - 1) rQ + T0  = rW - (T0 - T) dS + T0  
              (5) 

where the last two terms differ in sign from those of Eq. 
(2d), so that iW > rW. The irreversible performance of 
work always exceeds that which is required when the same 
step is executed reversibly, in accord with intuitive reason-
ing. The above equation is a reformulation of the Gouy-
Stodola theorem. 

SPECIFICATION OF THE DEFICIT FUNCTION 

To be of use the deficit function must be specified in 
terms of experimentally accessible quantities. This may be 
achieved in two ways. The first method involves solving Eq. 
(5) for : 

 = ( iW - rW)/T0 + (1 – T/T0)dS         (6a) 

The total performance of work, based on an integration 
of iW, may be determined experimentally and the integrated 
value of rW may be obtained by calculation. The determina-
tion of entropy through calorimetric measurements is also 
well established. Thus, in principle,  may be found by per-
forming the required integrations. Details concerning this 
methodology are left to a future publication. We briefly note 
that in the absence of work Eq. (6a) reduces to  

 

 

 

 

 

 

 

 

Fig. (1). Sketch of a temperature profile for the combined system and reserervoir at different temperatures T and T0. The temperature in each 

phase remains essentially constant over almost the entire region; the gradient in temperature develops over only a small region l at the inter-

face. 
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 = (1/T -1/T0) rQ          (6b) 

which is derived by different means in Ref. [8]. If work is 
processed without heat transfer one obtains the relation ob-
tained by a different approach in Ref. [9] below Eq. (3.53), 
namely 

 = ( iW - rW)/T0          (6c) 

FUNCTIONS OF STATE FOR IRREVERSIBLE 
PROCESSES 

For future use we now set up the differential form for the 
energy, E0, of the surroundings, as appropriate to processes 
that take place reversibly 

dE0 = T0dS0 - P0dV0 + iμ0idn0i          (7a) 

where P0 is the pressure, V0 the volume, μ0i the chemical po-
tential of species i, and n0i its mole number, all referred to 
the surroundings. For the closed entity (system + surround-
ings) energy and material is conserved, whence dE = - dE0 
and dn0i = - dni, where the nonsubscripted quantities refer to 
the system. If the volume of the compound unit is held fixed 
as well, we may set dV0 = - dV. Lastly, we use Eq. (1d) and 
replace dS0 in Eq. (7a) with dS0

(b)
 = - dS + , which is ap-

propriate to irreversible processes in the system. This leads 
to the expression for the energy of the system in the form 

dE = T0dS - P0dV + iμ0idni – T0          (7b) 

This relation, involving different arguments, was derived 
by Kestin [8]. Note that it is the intensive variables of the 
reservoir, different from those of the system, which appear in 
the above relationship, which applies even to irreversible 
phenomena. All extensive variables also remain well de-
fined. Conditions of the type introduced here were termed 
QSIPs. 

It is expedient to rewrite the above in the equivalent form 

dE = (T0 –T)dS - (P0 –P)dV + i(μ0i - μi)dni  

+ TdS - PdV + iμidni - T0         (7c) 

which explicitly introduces the intensive variables of the 
system proper. The irreversibilities are subsumed in the last 
term on the right. The reversible execution of the same step, 
while retaining the same intensive variables of the system, 
leads to the customary expression for the same differential 
energy: 

dE = TdS - PdV + iμidni          (7d) 

Since E is a function of state we may subtract (7d) from 
(7c) to obtain 

 = (1/ T0) (T0 – T)dS - (P0 – P)dV + i(μ0i – μi)dni     (7e) 

which determines the incremental deficit function in terms of 
independent variables that are experimentally accessible, 
namely: S, V, and ni. Eq. (7e) is consistent with Eq. (1d); 
when integrated, it relates the entropy increase in the uni-
verse to the transfer of entropy (heat), mechanical work, and 
matter across the interface that connects the system to its 
surroundings when QSI processes take place. While correct, 
the above formulation involves S as the independent vari-
able, which is not readily controlled experimentally. An al-
ternate approach is thus desirable. 

Toward this end we introduce the Helmholtz free energy 
A = E – TS, with the differential form dA = dE – TdS – SdT. 
When Eq. (7c) is inserted we obtain. 

dA = (T0 –T)dS - (P0 –P)dV + i(μ0i - μi)dni - SdT - PdV  
+ iμidni -T0             (8a) 

However, the appropriate control variables for the func-
tion, A = A(T,V,{ni}), should be temperature, volume, and 
composition. Accordingly, we reexpress the entropy in terms 
of these independent variables as S = S(T,V,{ni}), with  

dS = ( S/ T)V,
i

n
dT + ( S/ V)T,

i
n

dV + i( S/ ni)T,V,
jin dni 

            (8b) 

We next set ( S/ T)V = 
i

nV
C

,.
/T, where 

i
nV

C
,

 is the heat 

capacity at constant volume and composition, introduce the 

relevant Maxwell relation ( S/ V)T = ( P/ T)V, and set 

( )
ijn,V,Tii n/SŜ . Eq. (8a) then reads  

dA = (T0 – T)[(CV,
i

n /T) dT + ( P/ T)V,
i

n
 dV + i iŜ dni]  

 - (P0 – P) dV + i(μ0i – μi) dni - SdT - PdV + i μidni - T0  
            (8c) 

which is the desired expression for an infinitesimal change in 
Helmholtz free energy in QSIPs. 

Since A is a function of state, we now subtract from the 
above the standard expression for operations under reversi-
ble conditions,  

dA = - SdT - PdV + iμidni          (8d) 

to obtain 

T0  = (T0 – T)[(CV,
i

n /T)dT + ( P/ T)V,
i

n
dV + i iŜ dni] 

- (P0 – P)dV + i(μ0i – μi)dni         (8e)  

which relates the differential of the deficit function to tem-
perature, volume, and composition of the system as the ap-
propriate control variables. 

The integral formulation requires that we specify how 
each of the variables changes with time t. We assume that 
the reservoir is so huge and well mixed that all of its inten-
sive variables remain fixed, so that we set 

= 1
T (t )

T0

CV ,n [T (t ),V(t ),ni (t )]

T (t )

dT

dt
+

P

T

dV

dt
+ Ŝi

dni
dti

dt

P0
T0

1
P(t )

P0

dV

dt
dt +

μ0i

T0
1

μi (t )

μ 0i

dni
dt

dt
i

      (9) 

where the integrals are taken between the initial time, ti = 0, 
and the final time, tf = , as lower and upper limits respec-
tively.  

SPECIAL CASES 

To illustrate how Eq. (9) is used we now introduce sev-
eral simplifying, but reasonable, qualifications. First, we 
already assumed that the reservoir is so huge that none of its 
intensive properties is significantly altered in any inter-
change with the system; then T0, P0, and 0i remain essen-
tially constant. Second, we restrict consideration to a one - 
component system of fixed composition, which eliminates 
the third and fifth integrals in (9). Third, for definiteness 
assume that the system is initially in a state with Ti < T0 and 
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Pi < P0. Then as the interaction between the system and its 
surroundings is turned on, T and P both increase. The latter 
requirement is satisfied by fulfilling the sufficient condition 
that the volume of the system should diminish during the 
interaction. Thus, T and V become the control variables, 
while P adjusts in accordance with the relevant equation of 
state of the system. The volume is subject to direct control 
by the experimenter. Then, during the interaction, the tem-
perature of the system is allowed to increase by heat conduc-
tion from its initial value Ti to its final value Tf < T0, and its 
volume is manipulated to decrease from Vi to Vf, such at the 
end of the process the prevailing pressure has increased from 
Pi to Pf < P0 . As will be seen, in the approximation used be-
low, we do not need to specify the path by which T and V are 
altered; what is important are the specifications of the initial 
and final states. Fourth, this process also requires forcing an 
increase in volume of the reservoir to keep the total volume 
of the compound system constant, as required in setting up 
Eq. (7b). Fifth, for illustrative purposes, let the system and 
reservoir consist of a gas which satisfies the Berthelot equa-
tion of state [9], 

( )
2

2

2

2

/1
TV

an
Vnb

V

nRT

TV

an

nbV

nRT
P +=        (10) 

where a and b are both constants and all other symbols retain 
their conventional significance; the expansion applies as 
long as nb << V. 

We now proceed to use Eq. (9) as follows: Introduce the 
caloric equation of state for the energy E and Eq. (10) to 
determine  

( ) TVanPTPTVE
22

/2// ==        (11) 

and integrate. The arbitrary function of temperature is speci-

fied by 2/3nRT , so that 

E = 3nRT / 2 2n2a / VT; CV,n

= 3nR / 2 + 2n2a / VT2 ...
          (12) 

where CV,n is the heat capacity at constant volume and com-
position. Now substitute Eqs. (10) – (12) in (8e). At constant 
composition, changes in temperature and volume of the sys-
tem produce an infinitesimal change in entropy given by: 

TV

an

nbV

nR
dT

VT

an

T

nR

T

T
d +++=

22

2

3

2

0

2

2

3
1

P0
T0

2

T0

n2a

V2T
dV          (13) 

For subsequent ease of handling we next set up contribu-
tions under separate headings. (i) We first consider integrals 
that involve either T or V as the sole integration variable for 
transitioning the system from its initial state (Ti,Vi) to its fi-
nal state (Tf,Vf). The corresponding contribution to the en-
tropy is specified by: 

)(ln)(
2
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0

0
0 fi

f

i

if
i

f
i VV

T
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nbV

nbV
nRTT
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nR

T

TnR
+=

           (14a) 

(ii) For possible later use we separately study the entropy 
increase of the reservoir whose volume increases reversibly 
from V0 to V0 + (Vi – Vf) at fixed T0, P0, which matches the 
volume change of the system, thereby preserving the overall 
volume. For this purpose we adopt the basic relation 

),)(/1( 00000 dVPdETdS +=  with 
0000 )/( dVdVdEdE = for fixed 

T0. On introducing (11) and integrating we find that 
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          (14b) 

where we had expanded the denominator for small values of 

fi VV  relative to V0,i; also we set 
000

/Vnc as the con-

centration variable for the reservoir. 

(iii) It remains to work with two types of line integrals in 
Eq. (13) which simultaneously involve both T and V in the 
integrand. The first deals with temperature changes that ac-
company heat transfers 

dT
VT

an

T

T
d

T
=

3

2

0

2
1        (14c) 

and the second relates to volume changes which are pro-
duced by work exchange, 

dV
TV

an

TTV

an
d

V
=

2

2

0

22

2
2       (14d) 

 For their evaluation one must introduce time, t, as a 
parameter and specify the time dependence of both T and V. 
We consider two cases at random in conformity with the 
earlier discussion. Changes in volume and heat flows are 
adjusted to lead to the following time dependences: 

Case 1. Let ,0,)(,)( == teTtTeVtV
tk

i

tk

i
TV where 

kV and kT are time constants such that in the time interval 0  

t   the volume (temperature) changes from the initial value 

Vi, (Ti) to the final value Vf,, (Tf). Insert these two functions 

of time into (14c) and set dT = (dT/dt)dt to carry out the in-

tegrations, which are lengthy though straightforward. One 

finds that 

)/(ln

)/(ln
;1

)1/(

1

1
)2/(

12

0

2

22

if

fi

T

V

f

i

f

i

TV

f

i

f

i

TViii
T

TT

VV

k

k

T

T

V

V

kkT

T

T

V

V

kkTTV

an

=

+=

     (15a) 

Proceeding similarly with (14d), using dV = (dV/dt)dt 
one obtains 

= 1
)/21(

1
2

22

f

i

f

i

VTiii
V

T

T

V

V

kkTTV
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If the denominators such as (kV/kT – 1)
-1

 or (2kT/kV – 1)
-1 

approach zero their multipliers in square brackets do like-
wise since under these conditions Vf  Vi, Tf  Ti; 
l’Hôpital’s rule then shows that the respective products ap-
proach zero, as anticipated. 

If in its final state the system is equilibrated with its sur-
roundings, then Tf = T0; one then also requires that Vf satisfy 
Eq. (10) with Pf = P0.  

Case 2: We consider the time dependence of the volume 

),1/( tkVV
Vi

+=  with the same temperature dependence as 
before. The upper limit for kV  is determined by the choice 
for the final volume, Vf. Eqs. (14a) and (14b) are the same as 
before. On substituting the assumed time dependence for 
temperature into Eq. (14c) one obtains 
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          (16a) 

Proceeding similarly with Eq. (14d) one finds 
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both of which clearly differ from Case 1.  

Nevertheless, despite the differences between the two 
cases, the total entropy change associated with step (iii) for 
the above integrals (on elimination of the kT /kV ratios, and 
summing Eqs. (15a) and (15b) or Eqs. (16a) and (16b)), is 
exactly the same, namely. 
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       (17) 

This finding may be rationalized by noting that we had 
selected Tf /Ti and Vf /Vi at the outset for the two cases; in turn 
this required an adjustment of kT, kV, and  to meet this par-
ticular choice. The processes were selected to occur at rates 
sufficiently slow that the uniformity of temperature and pres-
sure was maintained over almost all the volume of the sys-
tem. Thus, the final results involve only the initial and final 
temperatures and volumes of the system; the temperature of 
the reservoir; the amount of material in the system and reser-
voir; the parameters appropriate to the Berthelot equation of 
state; and fundamental constants. In the QSIP approxima-
tion, with the assumed uniformly changing properties, no 
reference is made to pathways by which the system changes 
from its initial to its final configuration. What Eqs. (15) and 
(16) do show is a difference in the contributions of heat and 
work to T and V respectively, but they sum to the same 
final result. Further, if Vf = Vi, Tf = Ti the above equations 

show, as they should, that there is no entropy change in the 
system and surroundings. We have examined other changes 
of control variables with time and again obtain results fully 
in accordance with the above findings. 

The total entropy change of the compound system under 
the assumed conditions is the sum of Eqs. (14a) and (17); the 
entropy change of the reservoir responding to the irreversible 
processes is given by (14b). 

For an ideal gas as a working substance Eq. (17) drops 
out and Eq. (14a) simplifies to 
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             (18) 

Here the first and third terms agree with the entropy 
change accruing to the system under reversible operations.  

CYCLIC PROCESSES  

So far we have considered only monotonic changes in T 
and V. Also of interest is the execution of a circular process 
in which the initial state of the system is restored. To explore 
this situation we attach to the system a second reservoir at 
temperature T1 < Ti, pressure P1 < Pi, that initially remains 
sealed off while the interaction between the system and the 
first reservoir proceeds as shown above. After the end point 
Tf and Vf has been reached the first reservoir is sealed off and 
the interaction between the system and the second reservoir 
is initiated and maintained until the initial state of the system 
has been restored. 

Assume again that the reservoirs and system are com-
prised of a Berthelot gas; then, for the return path the sub-
scripts f and i in Eqs. (14a) must be interchanged and the 
subscript 0 must be replaced by 1. On adding this modified 
equation to (14a) for the forward process, one obtains (in the 
approximation nb << V) the net contribution associated with 
(i) the path-independent integrals as: 

 

])()([)(
11

)(
2

3 2
0

2
110

01
1 bccccVVR

TT
TTnR fiif ++=

           (19a) 

We proceed similarly (ii) with the same index alterations 
to Eq. (14b) to deal with the entropy contribution for the 
volume change of reservoir 1 in the reverse process. We also 
again expand P1 /T1 and add the resultant to Eq. (14b) to ob-
tain  

2 = a(Vi Vf )
c0
2

T0
2

c1
2

T1
2 + R(Vi Vf ) (c0 c1 ) +(c0

2 c1
2 )b   

          (19b) 

as the overall change in entropy of the two reservoirs. 

(iii) Lastly, we must evaluate the line integrals. To handle 

the exchange between the system and reservoir 1 we must 

repeat the mathematical operations that led to Eqs. (15), but 

with ,)(
tk

i
VeVtV

+
= ,)(

tk

i

T

eTtT = .0 t  It turns out that 

we then recover Eq. (17) with the indices once more inter-

changed. When this resultant is added to (17) we obtain 
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3
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       (19c) 

The total entropy change during the cyclic process is the 
sum of (19a), and (19c). 

The major contribution to the entropy changes in the cy-
clic process of the compound system is in the form 

=

01

11
)(

2

3

TT
TTnR if

      (19d) 

In fact, if matters are arranged such that c0 = c1, Eq. (19d) 
is the only contribution. In a strictly reversible process the 
total entropy change would add up to zero. 

Eqs. (19a) and (19c) specify the increase in entropy of 
the compound unit when the system is cycled through the 
changes Ti  Tf  Ti and Vi  Vf Vi. The results depend 
on the difference between the initial and final temperatures 
and volumes of the system, the temperatures of the hot and 
cold reservoir, the concentration of the gases in the reser-
voirs, the number of moles of gas in the system, and on the 
parameters of the Berthelot equation of state. Remarkably, 
the major contribution, Eq. (19d), is independent of the con-
stitution of the gas phases, and depends only on the indicated 
temperatures. 

CONCLUSIONS
 

By generalizing the standard thermodynamic theory per-
taining to irreversible phenomena it is possible to determine 
changes in the state of a system during an irreversible trans-
fer of heat or irreversible execution of work in terms of 
measurable quantities. The theory was extended to set up 
thermodynamic functions of state when irreversible changes 
take place, as shown by Eqs. (7c) and (8c). One can then 
specify the entropy associated with QSI processes across the 
boundary of a system attached to a reservoir, as shown by 
Eq. (9), in terms of changes in temperature, volume, and 
composition. The theory is applicable to QSIPs no matter 
how big the initial difference between the intensive proper-
ties of the reservoir and the system. Whenever two or more 
of the independent variables are simultaneously changed the 
relevant integrals require the specification of the time de-
pendence of T, V and n. Specific examples have been pro-
vided to show how to determine the contributions of irre-
versible processes to the entropy when different kinds of 
changes in temperature and volume are maintained across a 
thin boundary between a system and its surroundings at fixed 
composition. As is verified by explicit calculations, or by 
general considerations, in the QSIP approximation the total 
entropy change associated with the irreversible processes 
does not depend on the chosen pathway. The entropy change 
in QSIPs, as specified by temperature and volume as inde-

pendent variables, are specified by Eqs. (14a,b) and (17). 
Also investigated was the entropy change in the universe 
when the system executes a cyclic change, as specified by 
Eqs. (19a,b,c) .  

This analysis should serve as a prototype study of irre-
versible phenomena under specified initial assumptions. It 
complements the standard theory of irreversible processes, in 
which emphasis is placed on the specification of fluxes, such 
as transport of entropy and matter, in response to external 
forces either within a system or across boundaries. 
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NOTES: 

1. The notation is now somewhat confusing. What is 
meant by iQ in the limiting case is actually a reversi-
ble heat transfer while additional irreversible proc-
esses are triggered totally within the system; rQ rep-
resents the reversible transfer in the absence of such 
additional events. 

2. Actually, it is only necessary to demand that the vol-
ume change of the surroundings be exactly the nega-
tive of that of the system. This allows the surround-
ings to assume other volume changes not associated 
with the irreversible process of the system. 
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