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Abstract: Several papers in the literature on Advanced Oxidation Processes (AOPs) confirm the process as a viable alter-
native for the treatment of a variety of industrial effluents. In many of these works, modeling the variations of Chemical 
Oxygen Demand (COD) as a function of different experimental conditions was performed by techniques such as Design 
of Experiments, Artificial Neural Networks and Multivariate Analysis. These techniques require both a large number of 
parameters and a large quantity of experimental data for a systematic study of the model parameters as a function of ex-
perimental conditions. On the other hand, the study of Stochastic Differential Equations (SDE) is presently well devel-
oped with several practical applications noted in the literature. This paper presents a new approach in studying the varia-
tions of COD in AOPs via SDE. Specifically, two effluents, from the manufacture of paints and textiles were studied by 
combined treatment of the photo-Fenton process and catalytic ozonization.  
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1. INTRODUCTION 

 Chemical oxygen demand is an important parameter for 
estimating the concentration of organic contaminants in wa-
ter supplies and industrial wastes. Since the degradation of 
organic compounds demand oxygen, the concentrations of 
these substances can be estimated by the amount of oxygen 
required. A method using dichromate as the oxidizing agent 
in a closed system is critical in determining COD due to di-
chromate’s high oxidation potential and its operational ease 
for a wide variety of sample types. Inorganic species such as 
the O2

2-, Fe2+, halogens and SO2 have a reduction capacity, 
especially for potassium dichromate, interfering positively in 
test results. Also, the interference of chloride and nitrite is 
preventable by the addition of mercuric sulfate and sulfamic 
acid, respectively. However, a method correcting the inter-
ference of inorganic species such as Fe2+ and H2O2 is not 
mentioned in standard methods and is also poorly reported in 
the literature [1]. 

 Several industrial effluents are resistant to degradation by 
conventional processes such as biological or physical-
chemical. Thus, advanced chemical oxidation processes 
(AOPs) such as H2O2/UV, O3 and Fenton's reagent are very 
promising techniques in industrial applications [2].  

 Advanced chemical oxidation processes are divided into 
two groups: homogeneous and heterogeneous. The first  
 

*Address correspondence to this author at the Engineering School of  
Lorena– EEL – University of São Paulo C. Postal 116-CEP:12.602-810 - 
Lorena-SP , Estrada Municipal do Campinho, s/nº Brazil;  
Tel: 55 12 3159 5089; E-mails: adriano@debas.eel.usp.br; 
 oswaldocobra@debas.eel.usp.br 

occurs in one step and uses ozone, hydrogen peroxide or 
Fenton's reagent (a mixture of H2O2 with Fe2+ salt) as genera-
tors of hydroxyl radicals. The second type uses semiconduc-
tors as catalysts (titanium dioxide, zinc oxide, etc.) [3]. The 
use of UV radiation and the semiconducting properties of the 
catalyst allow for the formation of hydroxyl radicals and 
subsequent oxidation of effluent.  

 Besides inorganic species present in effluent, which can 
interfere with the measurement of COD, there is the addi-
tional presence of the residual oxidizing agent H2O2. Typi-
cally, hydrogen peroxide is unstable in natural conditions 
(temperature: 25 ± 2 ºC) and degrades rapidly in oxygen and 
water due to the existence of organic and inorganic catalysts. 
The leading factors contributing to the decomposition of 
H2O2 are an increase of temperature and pH (especially at 
pH above 6-8), the presence of contaminants (mainly transi-
tion metals such as copper, manganese and iron) and a low-
importance exposure to ultraviolet radiation. In most cases, 
pH and contaminants are predominant factors in the process 
of H2O2 decomposition. Thus, the production of hydroxyl 
radicals is influenced by several factors providing random 
behaviors in degradation results.  

 Neyens and Bayens [4] observed an increase in the value 
of COD after the addition of H2O2. They concluded that this 
variation was due to the presence of unconsumed oxidant 
residues in testing causing a positive interference in the 
analysis. The presentation of high concentrations of residual 
peroxide should be removed from the solution. The excess of 
H2O2 may also have contributed to the sequestration of hy-
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droxyl radicals through the reaction between hydroxyl radi-
cal and H2O2, thus reducing the efficiency of degradation. 

 Several researchers [5] and [6] reported the significant 
interference of H2O2 in the measurement of COD. 

 Potassium dichromate (K2Cr2O7), a powerful oxidant, can 
be used for the analysis of COD. Excessive amounts of hy-
drogen peroxide will react with potassium dichromate and, 
due to the presence of another oxidant, act as a reducing 
agent. This changes the value of COD experimentally to a 
false higher value. 

 Random COD values, apart from measurement errors, 
can also be derived from reaction conditions. One example is 
the system Fe2+/Fe3+ - H2O2, which has a maximum catalytic 
activity between pH 2.8 and 3.0. A decrease in pH depresses 
catalytic activity consequently inhibiting the complexation of 
Fe3+ with H2O2. Iron precipitates flakes can form at higher 
pH values. 

 This paper presents the degradation process modeling for 
two effluents via homogeneous oxidation processes based on 
the action of the reagent H2O2 with chemical oxygen demand 
as response variable. 

 The objective is to propose a model for the measurement 
of COD as a function of reaction time in an advanced oxida-
tion processes via photo-Fenton process and catalytic ozoni-
zation using stochastic differential equations. This allows for 
the modeling of the statistical mean value and also the dis-
persion of data. By this model it is possible to construct con-
fidence intervals that allow for the evaluation of intrinsic 
interference in the analysis of each experimental point. 
Moreover, it is possible to perform simulations of conversion 
versus time duration under experimental conditions and in 
consideration of the variability of experimental data.  

 Our paper first presents the definition of the model’s 
properties and parameter estimators. Afterwards, the model 
is adjusted for the two types of effluent treated by AOPs. For 
the first effluent, the model was adjusted to seven different 
experimental conditions with the aim of investigating how 
the parameters of the stochastic equation vary per condition. 
The capacity for the model to show the influence of experi-
mental conditions on the conversion of COD as a function of 
time was, likewise, investigated. However, a systematic 
study of operating-condition influences on the model pa-
rameters is not addressed in this paper. Finally, the model’s 
applicability to an alternate effluent treated by another AOP 
is verified for degradation reactions in different systems.  

2. CASE STUDIES - APPLICATION OF ADVANCED 
OXIDATION PROCESSES  

 Advanced Oxidation Processes are a technology poten-
tially capable of degrading recalcitrant effluents. Both the 
study and refinement of technical applications is essential in 
facilitating the optimization of such processes. 

 Hydroxyl radicals produced in the oxidation reaction can 
attack organic molecules by the abstraction of a hydrogen 
atom from the molecule of the compound to be treated. 
Equations 1 to 4 present the degradation sequence where R is 
an organic compound. 

  ROHRHOH 2  (1) 

  OHROHOHR 22  (2) 

  ROOOR 2  (3) 

  RROOHRHROO  (4)  

 Fenton's reagent was discovered approximately 100 years 
ago. Its application as an oxidation process agent to destroy 
organic compounds dates from 1960. The Fenton reaction 
has the advantage of completely destroying contaminants 
and producing water, carbon dioxide and inorganic salts by 
the dissociation of the oxidant and the formation of hydroxyl 
radical. 

 Fenton's reagent is characterized as a mixture of hydro-
gen peroxide and iron salts generating hydroxyl radicals. 
This is seen in Equations 5 and 6 [4].  

  OHOHFeOHFe 3
22

2  (5) 

32 FeOHFeOH    (6)  

 Equation 5 describes the initiation reaction for the Fenton 
process and Equation 6 shows the reaction termination. 

 Hydroxyl radical production can be increased by the ap-
plication of ultraviolet radiation as shown in Equation 7.  

Fe(OH)2+ + hv → Fe2+ + •OH (7)  

 This combination of the Fenton reaction with ultraviolet 
is known as a photo-Fenton reaction. The concentration of 
H2O2 is a critical factor in this process, blocking or reducing 
the subsequent consumption of H2O2 and requiring the addi-
tion of more H2O2. Excessive H2O2 can also act as sequester-
ing agent of hydroxyl radicals to form the hydroperoxyl rad-
ical HO2

 that has a lower reduction potential (E°= 1.42 V) 

than hydroxyl HO2
 , impacting the degradation process [7]. 

 Alternatively, ozone is occasionally produced and de-
composed by UV photo-degradation when a resultant oxy-
gen atom reacts with water producing OH in the intermedi-
ate production of photolyzed hydrogen peroxide (Equations 
8 and 9).  

OOO 2
UV

3    (8) 

OH2OHOHO UV
222

  (9)  

 A fraction of oxygen atoms produced by the photolysis of 
ozone is electronically excited and reacts with water to pro-
duce hydroxyl radicals. 

 The oxidation of organic compounds dissolved in water 
from ozonation can be considered as an AOP. In fact, hy-
droxyl radicals can be generated from the decomposition of 
ozone in the presence of hydroxyl ions and/or initiated by the 
trace presence of other substances such as transition metal 
cations. Basically, the process of ozonation can take two 
preferred paths: 1) a direct path through a molecular ozone 
reaction, or 2) by a radical path resulting from the reaction 
between hydroxyl radicals generated by ozone decomposi-
tion [8]. 
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 The combinative use of ozone or hydrogen peroxide with 
UV processes offers greater advantages over separate indi-
vidual applications in light of the significant increase in the 
ratio of hydroxyl radical formations.  

 Ozone is a powerful oxidant (Eº= 2.07 V), which can 
react with unsaturated molecular bonds (C=C, C=N, N=N, 
etc.). The generation of hydroxyl radicals enhances the abil-
ity to attack these compounds by the combined use of hydro-
gen peroxide. 

 The main advantage of using combined processes for 
water treatment is the synergism between photolysis and 
hydrogen peroxide allowing the degradation of compounds 
that require elevated oxidizing power [9].  

2.1. Materials and Methods  

 Experimental data for the study of the model were ob-
tained from the treatment of two types of industrial effluents: 

 Compounds from various paint industries formed a mix-
ture with a COD of approximately 240000 mg L-1. The-
se effluents from the manufacture of polyester and alkyd 
resins have high organic load and hence high value of 
COD 

 Effluents from textile industry are highly variable in 
composition and contain various combinations of raw 
materials and intermediate products. This effluent has 
high organic load, strong color (dyes) and also high 
concentrations of dissolved solids. Due to the elevated 
variability in effluents, the textile sector actively pursues 
new treatment technologies [2]. 

2.2. Effluent from the Manufacture of Polyester and Al-
kyd Resins  

 Samples were homogenized and processed into a "final 
sample" which was used for analysis and stored at 5 °C to 
minimize the possible changes of initial conditions. The 
sample was characterized after mixing as an effluent with 
high concentrations of pollutants due to a COD value of ap-
proximately 240 000 mgL-1. 

 A Pyrex® glass reactor of 1000 mL of capacity equipped 
with stirring system and ozone diffuser was utilized as the 
containment vessel. Additional equipment included a tem-
perature-controlled thermostatic bath, ozonator and an ultra-
violet (UV) source of two mercury vapor lamps at 125 W 
each. 

 An iron sulfate solution (0.18 mol.L-1) and a hydrogen 
peroxide solution at concentration of 30% (by weight) were 
used initially.  

2.3. Effluent from Textile Industry  

 Experiments in AOP treatment were performed in a tubu-
lar photochemical reactor (Model FPG-463/1) with a nomi-
nal volume of approximately 1 L, equipped with low-
pressure mercury lamp model-GPH 463T5L emitting UV 
radiation at 254 nm at 28 W and protected by a quartz tube. 
The liquid temperature was controlled by a thermostatic bath 
UNITEMP (Model 112D Fanem). The circulation of the 
effluent from the tubular reactor to the storage tank was per-

formed using a low-power centrifugal pump. Ozone was 
generated by the conversion of O2 into O3 using AUJE, 
Model MV 2001 by electric discharge over dielectric barriers 
(Corona effect) at 220 V, a maximum of 60 W and pressure 
below 2 bar. Photochemical treatment was performed in a 
batch process. The Fenton reagent (H2O2 at 30% by weight 
and FeSO4·7H2O0 at 18 mol.L-1) was added to the reaction 
system using two burettes by dripping H2O2 first with subse-
quent additions of FeSO4·7H2O.  

 Thus the experimental data derived for mathematical 
modeling were from two different effluents treated by sepa-
rate oxidation processes.  

3. MATHEMATICAL MODEL 

 Consider the functions f and g such that:   

   RRT0,:g,f    

 Also consider W(t) in the Wiener Process, which is a 
mathematical description of Brownian motion proposed by 
Norbet Wiener. Durrett [10] defined the Wiener Process as a 
continuous Gaussian process with independent increments 
where:    0=tWE  and      st=sWtWVar  , t> s. 
Furthermore, the probability distribution of    sWtW   is a 
normal distribution with zero mean and variance st  . Our 
work utilized the Itô stochastic differential equation shown 
in Equation 10. 

    tttt dWX,tgdtX,tf=dX   (10) 

 According to Klebaner [11], function f can be understood 
as a measure of the overall tendency of Xt and g as the meas-
ure of standard deviation for variations. If the functions f and 
g satisfy certain continuity conditions, as per [10] and [11], 

 presents a unique solution.   

 The empirical SDE proposed to study the variation of 
COD in this paper is given by Equation 11.  

tpktt dW
1)t(

c
dt

e

bk
a=dX









   (11)  

Where a, b, c, k and p are model parameters dependent on 
experimental conditions. Xt is the conversion of COD at time 
t, in minutes. The heuristic for this proposal can be found in 
the properties of Equation (11). It is not difficult to show that 
this equation has the following properties: 

a) For each t>0, it can be proved, [11], that Xt has a normal 
distribution with mean and variance shown in Equations 
12 and 13:  

    t
t.k

t =e1bt.a=XE   (12)  

 
 

2
t1p2

2

t =
1t

1
1

1p2

c
=XVar 














 
 (13) 

b) The covariance between Xt and Xs, to all t > s.  

        ssstt XVar=XEXXEXE   (14)  

c) From property (b) it is known that the correlation coef-
ficient between Xt and Xs for t>s>0 can be calculated as 
in Equation 14. 
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t

s
st 

 
 (15) 

 Note that in Equation 13 t  is greater than s  to t>s. 
The result (Equation 14) indicates that the data generated by 
the model for large time durations show significant correla-
tion. In fact, this behavior was observed in all experiments 
and the linear trend observed from approximately 20 min of 
reaction.  

d) Xt is a Gaussian process, i.e., the joint distribution of 
a finite number of members Xt1, Xt2,...Xtn in a multi-
variate normal vector with average, E(X) and co-
variance matrix Cov(Xti,Xtj) = Var(Xti), property (d) 
given, respectively, by Equations 16 and 17.  

),....,,()X(E tn2t1t    (16) 
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
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 (17) 

 This property can be proved based on [11]. Subsequently, 
the variables observed in the process Xt1, Xt2,...Xtn, are not 
independent and therefore there is a correlation structure 
between them evidenced by the correlation matrix. 

 In Equation 12, when k is large, shows that the average 
shape of the curve exhibits elevated exponential growth, 
stabilizing at a plateau in the value of the parameter b. The 
speed of this growth is controlled by the constant k. After 
reaching this plateau, the expected value presents linear be-
havior modeled by the term a.t. In all the experimental runs 
analyzed, the value of the parameter is minimal and in many 
cases zero based on the confidence interval of the parameter. 
Thus, for our model, it was possible to approach a reaction 
time of nearly 99% of the plateau with the following simple 
equation:  

k

)10ln(.2
tpat   (18)  

 Equation 18 reinforces the interpretation that the parame-
ter k is related to the reaction speed reaching a plateau.  

 From the properties in Equation 13, it can be observed 
that the variability in the initial time of Xt is zero. This agrees 
with the initial conversion to be zero. Moreover, the variance 
of Xt grows until stabilized at a value dependent on constants 
c and p. This behavior was also evident in the experimental 
runs analyzed from different types of effluent treated with 
AOPs. The growth rate of variability depends on the constant 
p. Finally the presence of Brownian motion is justified by 
existence of interference phenomenon between the reactants 
of the AOP leading to errors in concurrent COD readings, as 
discussed in the introduction.   

3.1. Estimators  

 According to property (a) parameters c and p are related 
to data dispersion and were estimated by the technique used 

by [5]. With that property, from discrete experimental obser-
vations of each experimental run and from the stochastic 
model of the equation, the authors present estimators for 
SDE parameters. Applying this technique, it is possible to 
obtain an estimator to c, as shown in Equation 19: 







p2)1it(

1
iQ

20

1
c

 (19)

 

where: Qi is calculated as: 

 
i

2
i

i t

X
Q





 (20)

 

 The calculation of Qi necessitates finding the squared 
value of the Xi conversion variation divided by the respec-
tive time variation. Thus, from the variability of all experi-
mental data, in each experimental run, a different parameter 
c estimative will be found.  

 However, an estimation of the value of c in Equation 19 
requires finding the value of p. An estimate for p can be ob-
tained from the numerical solution of the Equation 21. 

 0

p2)1it(

2
iX4

iP

p2)1it(

1
iQ














 (21) 

where Pi is given in Equation 22 :   

 (22)

 

 Thus, p is the value rendered in Equation 21 and tending 
towards zero or result in a value within an acceptable error 
limit (an order of magnitude of 10-2 in this work). Several 
experiments on the first effluent, conducted with different 
values of temperature, pH and concentrations of oxidizing 
reagents, produced a confidence interval value of 95% for 
average alpha of 0.46 ± 0.01.  

 As previously noted, parameters a, b and k are related to 
the shape of the mean curve. Although it is possible to use 
the method of [12] for estimating these parameters, the result 
is a nonlinear system with three equations difficult to solve. 
A simpler alternative to estimate these parameters was 
adopted in this work in the iterative algorithm described be-
low. 

 Algorithm (1): 

a) Assign initial value for k, (in all reactions examined in 
this study k was between 0 and 1); 

b) with k fixed, the values of a and b can be estimated by a 
least squares method using Equation 12; 

c) Calculate the quadratic sum of the average value of the 
model, as per Equation 12, using our experimental data. 
This value represents a measure of how accurate the av-
erage model is in relation to the experimental data; 

d) Repeat the algorithm for different values of k and adopt 
the result that produces a lower value for the quadratic 
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sum in Equation 12 in non-decreasing form. This condi-
tion is important based on an expectation of the average 
value of conversion increasing with reaction duration.  

3.2. Numerical Simulation of a SDE 

 The easy-to-implement Euler-Maruyama algorithm was 
used in this work to obtain numerical simulations of Equa-
tion 11. A detailed study of the EDS numerical simulations 
can be found in [13]. 

 Equation (11) can be discretized as follows: 

nWp)1nt(

c
nt)

nt.ke

k.b
a(nX1nX 




 (23)
 

 In Equation 23 ΔWn represents the increment of Wiener 
process calculated by a normal distribution with zero mean 
and variance Δtn. Note that in Equation 23, all necessary 
information to estimate the value of X(n+1) depends only on 
the information at time tn. In all simulations the value of Δtn 
was 0.01. All simulations were performed with Matlab.  

3.3. Confidence Intervals 

 The confidence intervals are an important tool for esti-
mating the parameters and to study the variability of the pro-
cess Xt. Based on the property (a) for each time t, one can 
calculate a confidence interval with 95% confidence for the 
process Xt in Equation 24.  

E(Xt) ±1.96*dp(Xt) (24) 

Where dp(Xt) is the square root of the Equation 13 results.  

 An estimate for the error can be obtained for parameter p 
through the error limit of Equation 21. A confidence interval 
of 95% adopted, for the least squares estimators found in 
Equation 13, for parameters a and b, since the k value found 
by the algorithm described above. Finally, the study of the 
variability for parameter k was examined in numerical simu-
lations of Equation 11. This technique is known as a para-
metric bootstrap [14].  

 The algorithm (2) below was used for the computational 
calculation of the confidence interval for parameter k: 

a. from an experimental run to estimate the parameters Â = 
(a, b, c, k, p) as previously described; 

b. in Equation 23, the estimated parameters (Â), generate a 
stochastic simulation and select the values of simulated 
Xt for time intervals of 10 minutes. The experimental 
procedure also collected information in 10 minute inter-
vals. These collected values are called bootstrap replicas 
and are considered as a new experimental run performed 
under the experimental conditions of the run under 
analysis. Again, using the procedure of work, estimate 
the parameters A*= (a*, b*, c*, k*, p*) and repeat the 
procedure several times for each experimental run cul-
minating in 200 replications in this work; 

c. and, finally, with a histogram of 200 values for k*, is 
possible to obtain a confidence interval for k.  

 

4. RESULTS AND DISCUSSIONS  

 Initially, Fig. (1) illustrates the ability of the stochastic 
model to simulate the experimental behavior of the reactions 
to the alkyd effluent sample (Effluent 1). In this figure, the 
red line represents the average model values with magenta 
lines indicating a confidence interval of 95%, E(Xt) ± 
1.96·dp(Xt), for conversion values in each t instant of time. 
Moreover, the result of the numerical simulation of the sto-
chastic equation (in blue), showed the random behavior of 
the model. The average value of the model shows a behavior 
consistent with the trend of experimental data. Regarding the 
dispersion value, with the confidence interval of 95%, there 
is a good fit between the variability of the experimental data 
and the model. In this experimental run, most of the data 
shows small fluctuations around the average model, which is 
shown by stochastic simulation (in blue). Otherwise, three 
experimental points near the edge of the confidence interval 
were presented, indicating a low probability that these points 
were generated by the model. This may indicate the presence 
of high values of interference and/or experimental errors in 
measurement. Another important indicator given by the con-
fidence interval is that a repetition of the reaction, with the 
same experimental conditions, will generate conversion rates 
that, in all likelihood, will be within the magenta interval in 
Fig. (1).  

 Characteristic of these reactions was the presence of a 
rapid conversion variation for the initial instants, approxi-
mately the first 20 minutes, followed by a plateau in the re-
mainder of the reaction duration. The results of seven ex-
perimental runs on effluent from a manufacture of polyester 
and alkyd resins are presented in Table 1 defining the 
model’s capacity for articulating experimental conditions 
influencing the conversion rate in early stages. Table 2 
shows estimates for all model parameters (2) in each of the 
experimental runs in Table 1. The last column of Table 2 
shows the R2 of the average value for the model indicating 
the proximity of this function respective to the experimental 
data. Fig. (2) shows the commonalities of the model with the 
parameters of Table 2.  

 

Fig. (1). Numerical simulation of SDE (11) with parameters ob-
tained in the experimental condition 7 of Table 1. 



6    The Open Chemical Engineering Journal, 2013, Volume 7 Siqueira et al. 

 With the aid of confidence intervals, it can be observed 
that there was no significant difference in the values of k at 
temperatures of 30 and 35 °C under the experimental condi-
tions. Therefore, as shown in Equation 18, there is no differ-
ence in the estimated time to reach a plateau. This fact is 
shown clearly in the items from (a) to (f) in Fig. (2) where 
the time of each reaction to reach its respective plateau is 
shown with a triangle mark. However, at 25 °C, the model 
indicates that the concentrations of reagents have an influ-
ence on the parameter k.   

 Comparing items (a) and (b) with the other items in Fig. 
(2) for parameter k shows evidence for faster reaction rates 
in the initial instants and, consequently, less time spent 
reaching a plateau. 

 An interesting comparison can be done between reactions 
2 and 7. The experimental conditions of the two reactions are 
the same, except that the reaction 7 temperature is 35 °C 
while reaction 2 occurs at 25 °C. From the analysis of pa-
rameter b indicating the plateau of reaction, there is no evi-
dence that these plateaus are different. However, the times to 
reach these levels are significantly different according to the 
analysis of the parameter k. This analysis confirms that high-
er temperatures result in a faster attainment of the plateau 
under experimental condition. An analysis of parameter a 
shows evidence that the higher temperature of the seventh 
reaction influenced the slope of the plateau to be different 
from zero. This indicates that the degradation reaction re-
mains significant after the reaction reaches a plateau. Under 
our experimental conditions, this occurred at a temperature 
of 35 °C in the presence of UV and concentrations of H2O2 

Table 1. Experimental Conditions Analyzed for Polyester and Alkyd Resin Effluent 

Nº UV pH T(°C) H2O2 Fe2+ O3 

1 1 2 25 25 26 4 

2 1 3 25 19 20 4 

3 0 2 30 19 20 2 

4 1 3 30 25 26 0 

5 0 2 35 25 26 4 

6 1 2 35 19 20 2 

7 1 3 35 19 20 4 

 

 
(2a)                                                

  (2b) 
                                                (2c) 

 

 (2d)                                                            (2e)                                                              (2f) 

Fig. (2). (a-f). Manufacturer’s polyester and alkyd resin effluent treated under the conditions of Table 1. The triangle marks the estimated 
time to reach the plateau obtained by equation (18). 
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and Fe2+ presented in 6 and 7 in the Table 2, i.e., the degrada-
tion reaction remains significant after reaching the level es-
timated by the time tpat in Equation 18. 

 Finally, the results for effluent from the textile industry, 
treated in three experimental conditions, are shown in Table 
3 and the estimated parameters in Table 4. The first point 
highlighted is the parameter p value of 0.46, a figure very 
similar to those found in the modeling for the first effluent. 

This result provides evidence that this parameter can be ap-
proximately 0.46 for various types of treated effluents by 
AOPs. 

 Data from the degradation reaction in experimental con-
dition 1 were obtained in a time interval greater than in other 
experimental conditions analyzed in this work. This allowed 
an evaluated behavior of the reaction in the plateau for a 
longer duration, as seen in the Fig. (3a). Again the confi-

Table 2. Model Parameters Obtained from Analyzed Conditions Polyester and Alkyd Resin Effluent 

N a b c p k R2 

1 0.0000+/-0.0005 0.66+/-0.04 0.007+/-0.002 0.46 0.130+/-0.007 0.9822 

2 0.0000+/-0.0009 0.73+/-0.07 0.006+/-0.003 0.46 0.100+/-0.004 0.9522 

3 0.0000+/-0.0004 0.70+/-0.03 0.009+/-0.002 0.44 0.31+/-0.04 0.9883 

4 0.0002+/-0.0008 0.66+/-0.06 0.009+/-0.005 0.47 0.30+/-0.05 0.9362 

5 0.0000+/-0.0005 0.64+/-0.04 0.009+/-0.003 0.45 0.32+/-0.06 0.9729 

6 0.0004+/-0.0002 0.61+/-0.02 0.008+/-0.002 0.46 0.30+/-0.04 0.9945 

7 0.0004+/-0.0001 0.78+/-0.03 0.010+/-0.004 0.46 0.30+/-0.05 0.9897 

    

(3a)                                                                   (3b) 

Fig. (3). (a-b). Effluent from the textile industry treated under the experimental conditions of Table 3. The triangle marks the estimated time 
to reach a plateau obtained by Equation 18.     

Table 3. Experimental Conditions Analyzed for the Effluent from the Textile Industry 

N° UV pH T(°C) H2O2 Fe+2 O3 

1 1 5 35 15 18 0 

2 0 5 35 15 18 2 

3 1 5 35 15 18 4 

Table 4. Parameters of the Model Obtained from the Experimental Conditions Analyzed for the Effluent from the Textile Indus-
try 

N a b c p k R2 

1 0.00004+/-0.00003 0.124+/-0.008 0.015+/-0.002 0.46 0.15+/-0.007 0.8371 

2 0.0000+/-0.0005 0.15+/-0.03 0.019+/-0.005 0.46 0.15+/-0.004 0.8878 

3 0.0002+/-0.0001 0.26+/-0.02 0.029+/-0.006 0.46 0.15+/-0.004 0.9785 
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dence intervals highlighted points with considerable noise 
and/or experimental errors in their measurements, deviating 
significantly from the average behavior. For this effluent, the 
parameter b must be highlighted as it was obtained in ex-
perimental condition 3 and showed notably elevated values 
than those found in conditions 1 and 2. This is shown in the 
combined action of ozone and UV in the degradation process 
as presented in Fig. (3b).  

5. CONCLUSIONS  

 With the stochastic equation presented, it was possible to 
model the average behavior and the variability in degrada-
tion of two different types of industrial effluents treated by 
different oxidation processes using only five stochastic mod-
el parameters dependent on the experimental conditions in 
the degradation process. An interesting result is that the pa-
rameter p, related to data scattering modeling, showed a val-
ue close to 0.46, for both effluents studied under different 
experimental conditions. Tt was possible to identify experi-
mental data with strong chemical interference and/or ex-
perimental error in their measurements using confidence 
intervals for COD conversion. Finally, based on the model, a 
simple formula was obtained to estimate the reaction time to 
reach a plateau.  
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