RESEARCH ARTICLE

Drying of Banana-Stepwise Effect in Drying Air Temperature on Drying Kinetics

Jigesh Mehta1*, Deepak Singh Panwar1, Smit Ghardesia1, Atik Chauhan1, Virajsinh V. Atodariya1, Bannishikha Banerjee2, Anand Metre3 and Mathurkumar S Bhakhar3

1 Mass Transfer Laboratory, Chemical Engineering Department, School of Engineering, P P Savani University, Kosmaba - 394125, Surat, Gujarat, India
2 Computer Engineering Department, School of Engineering, P P Savani University, Kosmaba - 394125, Surat, Gujarat, India
3 Department of Chemical Engineering, G H Patel College of Engineering & Technology, Vallabh Vidyangar, Anand - 388120, Gujarat, India.

Abstract:
Objective:
Three Different varieties of Banana namely Dwarf Cavendish (Ankleshwar region), Lacatan (Valia region) and Harichal (Bharuch region) were collected from the south Gujarat region, India to check the drying parameters. A pilot scale natural draft tray dryer was used for the drying experimental work.

Methods:
The performance of all the varieties of banana were verified with and without blanching operation. Change in colour, texture, shrinkage and appearance were studied. Blanching has a remarkable effect on the appearance and shrinkage of the banana samples.

Results:
On the other side, temperature does not show any countable effect on the shrinkage. For the Lacatan and Harichal banana samples, observed shrinkage was found to be very less at 60 °C and 70 °C while for Dwarf Cavendish sample, shrinkage was found more effective at all varying temperature ranges.

Conclusion:
Appearance, Colour and Texture of Dwarf Cavendish and Harichal were found to be significant at 70 °C and 80 °C while for Lacatan, no such acceptable changes were observed. Overall, blanching was found to be effective in improving the appearance and colour of all varieties of banana.

Keywords: Natural draft drying, Banana, Shrinkage, Blanching, Lacatan, Dwarf cavendish.

1. INTRODUCTION

Agricultural Products like vegetables and Fruits play a vital role in nutrition supply and as human diet. Approximate loss of agricultural products in the developing country like India after cultivation (Post-growing) is about 20-50%, which is really the highest number counted as far as the economy is concerned. Banana, is a highly popular fruit, which provides carbohydrates and other minerals in good quantity and is considered a prime fruit in India [1 - 3] Due to limited shelf life of the banana, different methods of maintaining the quality like cooling methods [4 - 11] and freezing technology [12 - 19] were implemented. Being very sensitive to temperature, Banana was exposed to drying processes to increase the life span [20 - 28]. Banana can also be dried by simply air drying and dehydration or freezing [29 - 31]. These methods of banana processing are found to have degrading effects like colour disorder, unbalanced sugar content, texture difference, etc. Better quality banana products can only be produced with natural mild drying [32,33]. Drying mechanism was applied in different modes to achieve better and good quality of banana product. Drying mechanism is better attended with banana slices kept in the heat pump drying loop. Effect of temperature and thickness of banana slices are...
the predominant characteristics that play a role in the drying operation. Moisture diffusivity increases with a gradual increase in temperature, which is expected [33,34]. Energy and Exergy analysis using first and second law of thermodynamics plays a vital role in determining the drying characteristic of banana under solar drying techniques [35]. Drying of banana not only includes the simple removal of moisture but also includes various other factors like shrinkage, texture, appearance and so on. Different physical parameters like pH, bulk density, yield, water holding capacity and oil holding capacity are specific in value to identify the optimum bananas crop. While observing the nutritional effect, it was found that moisture and other carbohydrates were reduced while drying and other ash moisture and protein-fats were increased. A significant effect in terms of reduction was also reported on specific anti-nutritional compositions, which is a breakthrough for the long usage of banana [36]. Application based study was also carried out on preparation of smoothies using dehydrated banana. Different compositions of dehydrated banana were taken into consideration for the preparation of smoothies focusing on parameters like color, texture, appearance, density, viscosity, flavor, sweetness determined experimentally or analytically [37]. A study on drying kinetics of two varieties of banana of Bangladesh was also related to moisture content of banana after the drying operation in different basis. These dimensional parameters specifically, changes in volume, diameter and length were calculated on different basis. These dimensional parameters were related to moisture content of banana after the drying phenomenon. As proposed equations [37] were considered for the further findings for every variety of samples of banana.

\[
\begin{align*}
(V/V_0) &= AX + B \\
(D/D_0)^2 &= A'X + B' \\
(L/L_0)^2 &= A''X + B''
\end{align*}
\]

A, B, A', B', A'', B'' are the parameters calculated based on

3. RESULT AND DISCUSSION

3.1. Appearance and Nature of Colour

In order to show comparison of the colour, quality and appearance of the dried banana, various digital images have been taken at different temperature and time with and without blanching method. It was investigated through observation of each sample of banana images that Dwarf Cavendish and Harichal were found effective in colour and appearance as required by the market demand and thus, it was considered to be authentic results on better selection of the banana variety at specific temperature and time without any use of sophisticated analytical method or techniques for the confirmation.

3.2. Blanching Effect

Blanching is a dehydrating process where the material is heated up for some specific high temperature for a few seconds or minutes to reduce the moisture content of material for further drying operation. Similar procedure was followed in the experimental work where banana samples were blanched in hot water for 0.5 to 3 minutes before performing the drying operation in Natural draft try dryer. Experiments were performed on different varieties of banana at different time and temperature with and without blanching operation. It was observed that the drying time of the banana is reduced sequentially with an increase in the blanching time. This is due to the convective heat transfer that takes place, where normally drying time is less and resistance film is not at all formed on the material containing starch. Unblanched banana does not show any significant effect in terms of colour, appearance and drying time. Figs. (1 and 2) shows the above discussed phenomena in a graphical form. (Refer supplementary data file)

3.3. Shrinkage

While selecting the banana for the chips preparation in the market, shrinkage of banana is the key factor for consideration. In order to justify the shrinkage results physically, it is quite difficult to connect the relation of shrinkage. Experimentally, varieties of banana were observed after each run of drying and specifically, changes in volume, diameter and length were calculated on different basis. These dimensional parameters were related to moisture content of banana after the drying phenomenon. As proposed equations [37] were considered for the further findings for every variety of samples of banana.

\[
\begin{align*}
(V/V_0) &= AX + B \\
(D/D_0)^2 &= A'X + B' \\
(L/L_0)^2 &= A''X + B''
\end{align*}
\]
continuous tedious regression method leading to R^2 values at different temperature, time and varieties as shown in Table 1. It was investigated through the data obtained by considering the calculation of all parameters and number of equations obtained, which then plotted leads to rigorous results. There is a slight difference in data observed for different temperature range for all three varieties of banana.

(V/V_0), $(D/D_0)^2$ and (L/L_0) calculated values were obtained using set of equations (1) to (3), while parameters were connected using set of equation parameters (4) to (9) given below.

\[
A = 0.521234 X_0^{0.874126} \quad (4)
\]

\[
A' = 0.781259 X_0^{-0.258369} \quad (5)
\]

\[
A = 0.897456 X_0^{0.874965} \quad (6)
\]

\[
B = \frac{0.52413 - 0.85497 X_0}{8.74125 - 2.587432 X_0} \quad (7)
\]

\[
B' = \frac{0.12036 - 0.02589 X_0}{-4.74125 + 6.25178 X_0} \quad (8)
\]

\[
B' = \frac{0.78942 - 0.48521 X_0}{5.25879 + 0.25137 X_0} \quad (9)
\]

The average % AE for the (V/V_0), $(D/D_0)^2$ and (L/L_0) for Dwarf Cavendish banana variety is 4.35, 4.78 and 1.65% respectively while maximum error observed is 8.40, 8.77 and 2.81% respectively as shown in Table 2. There is not much difference in the % error of the variables calculated.
Table 1. Parameters (A, B, A', B', A", B") calculated using set of equations (1 – 3)

<table>
<thead>
<tr>
<th>Variety of Banana</th>
<th>Temperature (°C)</th>
<th>Equation -1</th>
<th>Equation - 2</th>
<th>Equation-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dwarf Cavendish,</td>
<td>60</td>
<td>A 0.2526</td>
<td>B 0.1478</td>
<td>R 0.8982</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>A 0.1856</td>
<td>B 0.2541</td>
<td>R 0.9256</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>A 0.2025</td>
<td>B 0.0781</td>
<td>R 0.9587</td>
</tr>
<tr>
<td>Lacatan,</td>
<td>60</td>
<td>A 0.2089</td>
<td>B 0.1478</td>
<td>R 0.9136</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>A 0.1132</td>
<td>B 0.2157</td>
<td>R 0.9645</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>A 0.2287</td>
<td>B -0.0524</td>
<td>R 0.9187</td>
</tr>
<tr>
<td>Harichal,</td>
<td>60</td>
<td>A 0.0925</td>
<td>B 0.1125</td>
<td>R 0.9425</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>A 0.1287</td>
<td>B 0.0254</td>
<td>R 0.9278</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>A 0.1254</td>
<td>B 0.0365</td>
<td>R 0.9610</td>
</tr>
</tbody>
</table>

Table 2. Absolute % error calculation for dwarf cavendish banana variety at three different temperature

<table>
<thead>
<tr>
<th>Drying Temp. (°C)</th>
<th>X</th>
<th>V/V Exp</th>
<th>V/V Calc</th>
<th>% AE for V/V</th>
<th>(D/D)_f Exp</th>
<th>(D/D)_f Calc</th>
<th>% AE for (D/D)_f</th>
<th>L/L Exp</th>
<th>L/L Calc</th>
<th>% AE for L/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>5.245612</td>
<td>0.959245</td>
<td>0.610235</td>
<td>3.211866</td>
<td>0.682525</td>
<td>0.734561</td>
<td>7.624043</td>
<td>0.887802</td>
<td>0.899795</td>
<td>1.238226</td>
</tr>
<tr>
<td></td>
<td>4.854678</td>
<td>0.652514</td>
<td>0.692512</td>
<td>6.129705</td>
<td>0.724512</td>
<td>0.751425</td>
<td>2.334398</td>
<td>0.854565</td>
<td>0.865478</td>
<td>1.171070</td>
</tr>
<tr>
<td></td>
<td>4.982501</td>
<td>0.814720</td>
<td>0.854212</td>
<td>5.466151</td>
<td>0.782546</td>
<td>0.828245</td>
<td>5.839784</td>
<td>0.798452</td>
<td>0.801102</td>
<td>0.331892</td>
</tr>
<tr>
<td>70</td>
<td>4.250198</td>
<td>0.921245</td>
<td>0.947836</td>
<td>2.886420</td>
<td>0.721245</td>
<td>0.784512</td>
<td>8.771915</td>
<td>0.741278</td>
<td>0.758965</td>
<td>2.386149</td>
</tr>
<tr>
<td></td>
<td>4.147895</td>
<td>0.846585</td>
<td>0.885254</td>
<td>4.567645</td>
<td>0.761245</td>
<td>0.808452</td>
<td>6.201288</td>
<td>0.789854</td>
<td>0.801278</td>
<td>1.446343</td>
</tr>
<tr>
<td></td>
<td>5.014569</td>
<td>0.794613</td>
<td>0.841640</td>
<td>8.404971</td>
<td>0.814521</td>
<td>0.854521</td>
<td>4.910861</td>
<td>0.714598</td>
<td>0.728901</td>
<td>2.001544</td>
</tr>
<tr>
<td>80</td>
<td>5.411220</td>
<td>0.832112</td>
<td>0.864545</td>
<td>2.698788</td>
<td>0.845689</td>
<td>0.865478</td>
<td>2.339985</td>
<td>0.745637</td>
<td>0.756932</td>
<td>1.514948</td>
</tr>
<tr>
<td></td>
<td>5.745976</td>
<td>0.784512</td>
<td>0.805212</td>
<td>2.638582</td>
<td>0.889895</td>
<td>0.904125</td>
<td>1.701921</td>
<td>0.774189</td>
<td>0.789650</td>
<td>1.997057</td>
</tr>
<tr>
<td></td>
<td>4.989858</td>
<td>0.814578</td>
<td>0.845679</td>
<td>3.818173</td>
<td>0.895462</td>
<td>0.925468</td>
<td>3.350895</td>
<td>0.784500</td>
<td>0.806598</td>
<td>2.816826</td>
</tr>
</tbody>
</table>

* % AE = |(Calculated value- Experimental value)/(Experimental value)| x 100

CONCLUSION

Dwarf Cavendish shows higher drying rate while comparing the rate of drying amongst all three varieties. Lacatan and Harichal were found to be less effective in drying mechanism. Appearance, Colour and Texture improved for two varieties (Dwarf Cavendish and Harichal) at 70 °C and 80 °C of drying while for Lacatan, not much changes were observed. This action could be due to the effect of drying time, different structure and initial moisture content. Initial Moisture content in all the three banana varieties decreased to some specific time of blanching. Comparative study of experimental and calculated values of Volume, length and diameter (Table 2) reveals that as temperature increases, initial moisture content decreases and shrinkage decreases consequently. Hence, drying time for the material can be automatically reduced. Looking to the characteristics of three different banana varieties, Dwarf Cavendish (from Ankleshwar region, South Gujarat, India) is highly recommended for the commercial production of banana chips as it proved to be highly attractive in appearance, colour and texture after even long drying. Blanching also added acceptance features to this variety.

NOMENCLATURE

A, B, A', B', A", B" Constants in equation (1) – (3)

D & D_0 Final and initial diameter of cylindrical banana sample, mm

L & L_0 Final and initial length of cylindrical banana sample, mm

V & V_0 Final and initial volume of cylindrical banana sample, mm³

T drying solid temperature, K

X moisture content of drying solid, kg moisture kg dry solid⁻¹

X₀ initial moisture content of drying solid, kg kg⁻¹,dry basis

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No animals/humans were used for studies that are the basis of this research.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The authors confirm that the data supporting the findings of this study are available within the article.
FUNDING
None

CONFLICT OF INTEREST
The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS
The authors are grateful to the facilities provided in the mass transfer operations laboratory by the P P Savani University and to the Dean, Dr. Niraj Shah, School of Engineering, P P Savani University for kind support during the research work.

REFERENCES

[21] D. Verma, N. Kaushik, and P. Sinirvava Rao, "Application of high hydrostatic pressure as a pretreatment for osmotic dehydration of

