Extraction of Clove and Vetiver Oils with Supercritical Carbon Dioxide: Modeling and Simulation
Abstract
The kinetics of supercritical fluid extraction (SFE) of clove and vetiver oils using carbon dioxide as solvent was studied, in order to establish an efficient method to predict extraction curves on large scale. The mass transfer model of Sovová was used to adjust the experimental SFE data, which were obtained at 100 bar and 35 °C for clove and 200 bar and 40 °C for vetiver, using extraction columns of different geometry and solvent flow rates. Some other process parameters, such as bed density and porosity, solvent to feed ratio and solvent velocity were kept constant from one experiment to another, in order to verify if the mass transfer coefficients adjusted by the model varied. The results show that the model of Sovová was able to predict an overall extraction curve for clove from data obtained with twenty times less raw material, since the mass transfer coefficients remained the same and the predicted curves were similar to the observed ones. For vetiver, the simulation was not as effective, probably due to the effects of transport properties on the process.