Abstract

Background:

Citric acid, aside its uses as a cleaning agent, has varied applications in the chemical, pharmaceutical, and food industries. A biotechnological fermentation process is one of the easiest ways to satisfy the demands for this useful commodity.

Methods:

The fermentation of pineapple waste by Aspergillus niger for the production of citric acid was investigated in this study. STATISTICA 8 release 7 (Statsoft, Inc. USA) statistical software was used for the design of experiments, evaluation, and optimization of the process using the central composite design (CCD), a response surface methodology approach. Lower-upper limits of the design for the operating parameters were temperature (25-35 oC), fermentation time (35-96 h), pH (3-6), methanol concentration (1-7%) and glucose (15-85 g/L). Twenty-seven duplicated experimental runs were generated for the CCD route.

Results & Conclusion:

The optimal operating conditions were validated at 38 g/L of glucose concentration, 3% (v/v) of methanol, 50 h of fermentation time, pH of 4.3 and temperature of 30 oC which yielded15.51 g/L citric acid. The statistical significance of the model was evaluated using a one-way analysis of variance. The validated predicted response values obtained from the statistical model showed close relationships with the experimental data.

Keywords: Citric acid, Central composite design, Pineapple waste, Fermentation, Statistical optimization, Aspergillus niger.
Fulltext HTML PDF ePub
1800
1801
1802
1803
1804