All published articles of this journal are available on ScienceDirect.

RESEARCH ARTICLE

The Design of an Integrated Crude Oil Distillation Column with Submerged Combustion Technology

The Open Chemical Engineering Journal 28 Feb 2019 RESEARCH ARTICLE DOI: 10.2174/1874123101912010007

Abstract

Objective:

Generally, Petroleum refineries are put in place to convert or refine unprocessed crude oil into more useful products using both physical separation and chemical conversion processes. Albeit, different refining unit are subsets of the physical separation category. The atmospheric and vacuum distillation unit seems to be more prominent. Conventionally, the crude atmospheric residue cannot be further heated in an atmospheric condition due to: coke formation, pipes plugging, thermal cracking and straining of the furnace. A vacuum distillation column is therefore required.

Methods:

This study, therefore, focuses on the limitations, “over straining of the furnace to provide the necessary heat” and “non-reliance on the additional re-boiler since it only acts as a heat exchanger”. An integrated distillation column with a capacity of 10,000 barrel per day was therefore designed for the concurrent production of all distillate cuts.

Results:

This was achieved through the introduction of a submerged combustion zone at the stripping section of the column where Naphtha was utilized as the source of fuel. Verification of this approach was also conducted using Autodesk invention software and a finite element analysis tool to evaluate both thermal and computational fluid analysis impact. Overall, all derived distilled products met the American Society for Testing and Material Standard Table 6.

Keywords: Combustion, Crude oil, Design, Distillation, Submerged, Petroleum refineries.
Fulltext HTML PDF ePub
1800
1801
1802
1803
1804