RESEARCH ARTICLE


On Orthogonal Polynomials and Finite Moment Problem



Fawaz Hjouj1, *, Mohamed Soufiane Jouini1
1 Department of Mathematics, Khalifa University, Abu Dhabi, UAE


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 138
Abstract HTML Views: 44
PDF Downloads: 92
ePub Downloads: 44
Total Views/Downloads: 318
Unique Statistics:

Full-Text HTML Views: 78
Abstract HTML Views: 38
PDF Downloads: 55
ePub Downloads: 35
Total Views/Downloads: 206



Creative Commons License
© 2022 Hjouj and Jouini

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Mathematics, Khalifa University, Abu Dhabi, UAE; E-mail: fawaz.hjouj@ku.ac.ae


Abstract

Background:

This paper is an improvement of a previous work on the problem recovering a function or probability density function from a finite number of its geometric moments, [1]. The previous worked solved the problem with the help of the B-Spline theory which is a great approach as long as the resulting linear system is not very large. In this work, two solution algorithms based on the approximate representation of the target probability distribution function via an orthogonal expansion are provided. One primary application of this theory is the reconstruction of the Particle Size Distribution (PSD), occurring in chemical engineering applications. Another application of this theory is the reconstruction of the Radon transform of an image at an unknown angle using the moments of the transform at known angles which leads to the reconstruction of the image form limited data.

Objective:

The aim is to recover a probability density function from a finite number of its geometric moments.

Methods:

The tool is the orthogonal expansion approach. The Shifted-Legendre Polynomials and the Chebyshev Polynomials as bases for the orthogonal expansion are used in this study.

Results:

A high degree of accuracy has been obtained in recovering a function without facing a possible ill-conditioned linear system, which is the case with many typical approaches of solving the problem. In fact, for a normalized template function f on the interval [0, 1], and a reconstructed function ; the reconstruction accuracy is measured in two domains. One is the moment domain, in which the error (difference between the moments of f and the moments of ) is zero. The other measure is the standard difference in the norm -space ||f- || which can be ≈ 10-6 or less.

Conclusion:

This paper discusses the problem of recovering a function from a finite number of its geometric moments for the PSD application. Linear transformations were used, as needed, so that the function is supported on the unit interval [0, 1], or on [0, α] for some choice of α. This transformation forces the sequence of moments to vanish. Then, an orthogonal expansion of the Scaled Shifted Legendre Polynomials, as well as the Chebyshev Polynomials, are developed. The result shows good accuracy in recovering different types of synthetic functions. It is believed that up to fifteen moments, this approach is safe and reliable.

Keywords: Reconstruction, Function, Moments, Orthogonal expansion, Particle size, Distributions image, processing.