All published articles of this journal are available on ScienceDirect.
Determination of the Thickness of a Power-Law Fluid Driven by the Penetration of a Long Gas Bubble in a Rectangular Channel Using a Singular Perturbation Method
Abstract
In the present work an analytical and numerical study is presented in order to determine the residual fluid film thickness of a power-law fluid on the walls of a rectangular horizontal channel when it is displaced by another immiscible fluid of negligible viscosity. The mathematical model describes the motion of the displaced fluid and the interface between both fluids. In order to obtain the residual film thickness, m , we used a singular perturbation technique: the matching asymptotic method; in the limit of small capillary number, Ca . The main results indicated that the residual film thickness of the non-Newtonian fluid decreases for decreasing values of the power-law index, which is in qualitative agreement with experimental results.